ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.01091
  4. Cited By
Efficient Marginalization-based MCMC Methods for Hierarchical Bayesian
  Inverse Problems

Efficient Marginalization-based MCMC Methods for Hierarchical Bayesian Inverse Problems

2 November 2018
A. Saibaba
Johnathan M. Bardsley
D. Brown
A. Alexanderian
ArXivPDFHTML

Papers citing "Efficient Marginalization-based MCMC Methods for Hierarchical Bayesian Inverse Problems"

9 / 9 papers shown
Title
Fast sampling in a linear-Gaussian inverse problem
Fast sampling in a linear-Gaussian inverse problem
C. Fox
R. Norton
41
35
0
06 Jul 2015
Transport map accelerated Markov chain Monte Carlo
Transport map accelerated Markov chain Monte Carlo
M. Parno
Youssef Marzouk
OT
80
161
0
17 Dec 2014
Dimension-independent likelihood-informed MCMC
Dimension-independent likelihood-informed MCMC
Tiangang Cui
K. Law
Youssef M. Marzouk
49
198
0
13 Nov 2014
Scalable and efficient algorithms for the propagation of uncertainty
  from data through inference to prediction for large-scale problems, with
  application to flow of the Antarctic ice sheet
Scalable and efficient algorithms for the propagation of uncertainty from data through inference to prediction for large-scale problems, with application to flow of the Antarctic ice sheet
T. Isaac
N. Petra
G. Stadler
Omar Ghattas
PINN
54
153
0
05 Oct 2014
Optimal low-rank approximations of Bayesian linear inverse problems
Optimal low-rank approximations of Bayesian linear inverse problems
Alessio Spantini
A. Solonen
Tiangang Cui
James Martin
L. Tenorio
Youssef Marzouk
68
130
0
13 Jul 2014
Analysis of the Gibbs sampler for hierarchical inverse problems
Analysis of the Gibbs sampler for hierarchical inverse problems
S. Agapiou
Johnathan M. Bardsley
O. Papaspiliopoulos
Andrew M. Stuart
64
60
0
05 Nov 2013
A computational framework for infinite-dimensional Bayesian inverse
  problems: Part II. Stochastic Newton MCMC with application to ice sheet flow
  inverse problems
A computational framework for infinite-dimensional Bayesian inverse problems: Part II. Stochastic Newton MCMC with application to ice sheet flow inverse problems
N. Petra
James Martin
G. Stadler
Omar Ghattas
68
231
0
28 Aug 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
288
3,276
0
09 Jun 2012
The pseudo-marginal approach for efficient Monte Carlo computations
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
156
894
0
31 Mar 2009
1