ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1811.01057
  4. Cited By
Semidefinite relaxations for certifying robustness to adversarial
  examples

Semidefinite relaxations for certifying robustness to adversarial examples

2 November 2018
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
    AAML
ArXiv (abs)PDFHTML

Papers citing "Semidefinite relaxations for certifying robustness to adversarial examples"

36 / 186 papers shown
Title
Benchmarking Adversarial Robustness
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
108
36
0
26 Dec 2019
Jacobian Adversarially Regularized Networks for Robustness
Jacobian Adversarially Regularized Networks for Robustness
Alvin Chan
Yi Tay
Yew-Soon Ong
Jie Fu
AAML
92
76
0
21 Dec 2019
Certified Robustness for Top-k Predictions against Adversarial
  Perturbations via Randomized Smoothing
Certified Robustness for Top-k Predictions against Adversarial Perturbations via Randomized Smoothing
Jinyuan Jia
Xiaoyu Cao
Binghui Wang
Neil Zhenqiang Gong
AAML
60
96
0
20 Dec 2019
Resilient Cyberphysical Systems and their Application Drivers: A
  Technology Roadmap
Resilient Cyberphysical Systems and their Application Drivers: A Technology Roadmap
Somali Chaterji
Parinaz Naghizadeh Ardabili
M. A. Alam
S. Bagchi
M. Chiang
...
Tiark Rompf
A. Sabharwal
S. Sundaram
James Weimer
Jennifer Weller
54
16
0
20 Dec 2019
What it Thinks is Important is Important: Robustness Transfers through
  Input Gradients
What it Thinks is Important is Important: Robustness Transfers through Input Gradients
Alvin Chan
Yi Tay
Yew-Soon Ong
AAMLOOD
79
52
0
11 Dec 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
113
13
0
20 Nov 2019
Certifiable Robustness to Graph Perturbations
Certifiable Robustness to Graph Perturbations
Aleksandar Bojchevski
Stephan Günnemann
AAML
106
126
0
31 Oct 2019
Universal Approximation with Certified Networks
Universal Approximation with Certified Networks
Maximilian Baader
M. Mirman
Martin Vechev
74
22
0
30 Sep 2019
Defending Against Physically Realizable Attacks on Image Classification
Defending Against Physically Realizable Attacks on Image Classification
Tong Wu
Liang Tong
Yevgeniy Vorobeychik
AAML
84
126
0
20 Sep 2019
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Adversarial Attacks and Defenses in Images, Graphs and Text: A Review
Han Xu
Yao Ma
Haochen Liu
Debayan Deb
Hui Liu
Jiliang Tang
Anil K. Jain
AAML
79
680
0
17 Sep 2019
Adversarial Robustness Against the Union of Multiple Perturbation Models
Adversarial Robustness Against the Union of Multiple Perturbation Models
Pratyush Maini
Eric Wong
J. Zico Kolter
OODAAML
65
151
0
09 Sep 2019
Implicit Deep Learning
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
64
182
0
17 Aug 2019
A Survey of Recent Scalability Improvements for Semidefinite Programming
  with Applications in Machine Learning, Control, and Robotics
A Survey of Recent Scalability Improvements for Semidefinite Programming with Applications in Machine Learning, Control, and Robotics
Anirudha Majumdar
G. Hall
Amir Ali Ahmadi
115
102
0
14 Aug 2019
ART: Abstraction Refinement-Guided Training for Provably Correct Neural
  Networks
ART: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Xuankang Lin
He Zhu
R. Samanta
Suresh Jagannathan
AAML
95
29
0
17 Jul 2019
Certifiable Robustness and Robust Training for Graph Convolutional
  Networks
Certifiable Robustness and Robust Training for Graph Convolutional Networks
Daniel Zügner
Stephan Günnemann
OffRL
85
163
0
28 Jun 2019
The Attack Generator: A Systematic Approach Towards Constructing
  Adversarial Attacks
The Attack Generator: A Systematic Approach Towards Constructing Adversarial Attacks
F. Assion
Peter Schlicht
Florens Greßner
W. Günther
Fabian Hüger
Nico M. Schmidt
Umair Rasheed
AAML
75
14
0
17 Jun 2019
Towards Stable and Efficient Training of Verifiably Robust Neural
  Networks
Towards Stable and Efficient Training of Verifiably Robust Neural Networks
Huan Zhang
Hongge Chen
Chaowei Xiao
Sven Gowal
Robert Stanforth
Yue Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
107
351
0
14 Jun 2019
Towards Compact and Robust Deep Neural Networks
Towards Compact and Robust Deep Neural Networks
Vikash Sehwag
Shiqi Wang
Prateek Mittal
Suman Jana
AAML
82
40
0
14 Jun 2019
Tight Certificates of Adversarial Robustness for Randomly Smoothed
  Classifiers
Tight Certificates of Adversarial Robustness for Randomly Smoothed Classifiers
Guang-He Lee
Yang Yuan
Shiyu Chang
Tommi Jaakkola
AAML
73
127
0
12 Jun 2019
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural
  Networks
Efficient and Accurate Estimation of Lipschitz Constants for Deep Neural Networks
Mahyar Fazlyab
Alexander Robey
Hamed Hassani
M. Morari
George J. Pappas
169
462
0
12 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed
  Classifiers
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
134
552
0
09 Jun 2019
Unlabeled Data Improves Adversarial Robustness
Unlabeled Data Improves Adversarial Robustness
Y. Carmon
Aditi Raghunathan
Ludwig Schmidt
Percy Liang
John C. Duchi
130
754
0
31 May 2019
Scaleable input gradient regularization for adversarial robustness
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
101
79
0
27 May 2019
CharBot: A Simple and Effective Method for Evading DGA Classifiers
CharBot: A Simple and Effective Method for Evading DGA Classifiers
Jonathan Peck
Claire Nie
R. Sivaguru
Charles Grumer
Femi G. Olumofin
Bin Yu
A. Nascimento
Martine De Cock
AAML
45
44
0
03 May 2019
Adversarial Training for Free!
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
139
1,255
0
29 Apr 2019
On Training Robust PDF Malware Classifiers
On Training Robust PDF Malware Classifiers
Yizheng Chen
Shiqi Wang
Dongdong She
Suman Jana
AAML
99
69
0
06 Apr 2019
Defending against Whitebox Adversarial Attacks via Randomized
  Discretization
Defending against Whitebox Adversarial Attacks via Randomized Discretization
Yuchen Zhang
Percy Liang
AAML
79
76
0
25 Mar 2019
On Certifying Non-uniform Bound against Adversarial Attacks
On Certifying Non-uniform Bound against Adversarial Attacks
Chen Liu
Ryota Tomioka
Volkan Cevher
AAML
79
19
0
15 Mar 2019
Safety Verification and Robustness Analysis of Neural Networks via
  Quadratic Constraints and Semidefinite Programming
Safety Verification and Robustness Analysis of Neural Networks via Quadratic Constraints and Semidefinite Programming
Mahyar Fazlyab
M. Morari
George J. Pappas
AAML
92
233
0
04 Mar 2019
A Convex Relaxation Barrier to Tight Robustness Verification of Neural
  Networks
A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks
Hadi Salman
Greg Yang
Huan Zhang
Cho-Jui Hsieh
Pengchuan Zhang
AAML
148
271
0
23 Feb 2019
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Wasserstein Adversarial Examples via Projected Sinkhorn Iterations
Eric Wong
Frank R. Schmidt
J. Zico Kolter
AAML
95
211
0
21 Feb 2019
VC Classes are Adversarially Robustly Learnable, but Only Improperly
VC Classes are Adversarially Robustly Learnable, but Only Improperly
Omar Montasser
Steve Hanneke
Nathan Srebro
91
141
0
12 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
219
2,057
0
08 Feb 2019
Theoretically Principled Trade-off between Robustness and Accuracy
Theoretically Principled Trade-off between Robustness and Accuracy
Hongyang R. Zhang
Yaodong Yu
Jiantao Jiao
Eric Xing
L. Ghaoui
Michael I. Jordan
239
2,566
0
24 Jan 2019
Strong mixed-integer programming formulations for trained neural
  networks
Strong mixed-integer programming formulations for trained neural networks
Ross Anderson
Joey Huchette
Christian Tjandraatmadja
J. Vielma
187
259
0
20 Nov 2018
Rademacher Complexity for Adversarially Robust Generalization
Rademacher Complexity for Adversarially Robust Generalization
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
105
261
0
29 Oct 2018
Previous
1234