Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1811.00260
Cited By
Horizon: Facebook's Open Source Applied Reinforcement Learning Platform
1 November 2018
J. Gauci
Edoardo Conti
Yitao Liang
Kittipat Virochsiri
Yuchen He
Zachary Kaden
Vivek Narayanan
Xiaohui Ye
Zhengxing Chen
Scott Fujimoto
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Horizon: Facebook's Open Source Applied Reinforcement Learning Platform"
29 / 29 papers shown
Title
Nuclear Microreactor Control with Deep Reinforcement Learning
Leo Tunkle
Kamal Abdulraheem
Linyu Lin
M. Radaideh
36
0
0
31 Mar 2025
Acceleration for Deep Reinforcement Learning using Parallel and Distributed Computing: A Survey
Zhihong Liu
Xin Xu
Peng Qiao
Dongsheng Li
OffRL
29
2
0
08 Nov 2024
Karolos: An Open-Source Reinforcement Learning Framework for Robot-Task Environments
Christian Bitter
Timo Thun
Tobias Meisen
36
1
0
01 Dec 2022
Estimating and Penalizing Induced Preference Shifts in Recommender Systems
Micah Carroll
Anca Dragan
Stuart J. Russell
Dylan Hadfield-Menell
OffRL
38
41
0
25 Apr 2022
Reinforcement Learning in Practice: Opportunities and Challenges
Yuxi Li
OffRL
38
9
0
23 Feb 2022
Rule Mining over Knowledge Graphs via Reinforcement Learning
Lihan Chen
Sihang Jiang
Jingping Liu
Chao Wang
Shenmin Zhang
Chenhao Xie
Jiaqing Liang
Yanghua Xiao
Rui Song
44
19
0
21 Feb 2022
RLOps: Development Life-cycle of Reinforcement Learning Aided Open RAN
Peizheng Li
Jonathan D. Thomas
Xiaoyang Wang
Ahmed Khalil
A. Ahmad
...
S. Kapoor
Arjun Parekh
A. Doufexi
Arman Shojaeifard
Robert Piechocki
AI4TS
14
37
0
12 Nov 2021
Truthful AI: Developing and governing AI that does not lie
Owain Evans
Owen Cotton-Barratt
Lukas Finnveden
Adam Bales
Avital Balwit
Peter Wills
Luca Righetti
William Saunders
HILM
238
111
0
13 Oct 2021
Evaluating the progress of Deep Reinforcement Learning in the real world: aligning domain-agnostic and domain-specific research
J. Luis
E. Crawley
B. Cameron
OffRL
25
6
0
07 Jul 2021
A Minimalist Approach to Offline Reinforcement Learning
Scott Fujimoto
S. Gu
OffRL
58
785
0
12 Jun 2021
OpenGraphGym-MG: Using Reinforcement Learning to Solve Large Graph Optimization Problems on MultiGPU Systems
Weijian Zheng
Dali Wang
Fengguang Song
GNN
OffRL
AI4CE
20
1
0
18 May 2021
Bellman: A Toolbox for Model-Based Reinforcement Learning in TensorFlow
John Mcleod
Hrvoje Stojić
Vincent Adam
Dongho Kim
Jordi Grau-Moya
Peter Vrancx
Felix Leibfried
OffRL
21
2
0
26 Mar 2021
RecSim NG: Toward Principled Uncertainty Modeling for Recommender Ecosystems
Martin Mladenov
Chih-Wei Hsu
Vihan Jain
Eugene Ie
Christopher Colby
Nicolas Mayoraz
H. Pham
Dustin Tran
Ivan Vendrov
Craig Boutilier
BDL
15
32
0
14 Mar 2021
Reinforcement Learning with Combinatorial Actions: An Application to Vehicle Routing
A. Delarue
Ross Anderson
Christian Tjandraatmadja
35
94
0
22 Oct 2020
Simultaneous Relevance and Diversity: A New Recommendation Inference Approach
Yifang Liu
Zhe Xu
Qiyuan An
Yang Yi
Yanzhi Wang
Trevor Hastie
15
0
0
27 Sep 2020
Acme: A Research Framework for Distributed Reinforcement Learning
Matthew W. Hoffman
Bobak Shahriari
John Aslanides
Gabriel Barth-Maron
Nikola Momchev
...
Srivatsan Srinivasan
A. Cowie
Ziyun Wang
Bilal Piot
Nando de Freitas
65
225
0
01 Jun 2020
Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods
Jiale Zhi
Rui Wang
Jeff Clune
Kenneth O. Stanley
OffRL
30
12
0
25 Mar 2020
An empirical investigation of the challenges of real-world reinforcement learning
Gabriel Dulac-Arnold
Nir Levine
D. Mankowitz
Jerry Li
Cosmin Paduraru
Sven Gowal
Todd Hester
OffRL
34
121
0
24 Mar 2020
BRPO: Batch Residual Policy Optimization
Kentaro Kanamori
Yinlam Chow
Takuya Takagi
Hiroki Arimura
Honglak Lee
Ken Kobayashi
Craig Boutilier
OffRL
141
46
0
08 Feb 2020
SLM Lab: A Comprehensive Benchmark and Modular Software Framework for Reproducible Deep Reinforcement Learning
Keng Wah Loon
L. Graesser
Milan Cvitkovic
OffRL
26
13
0
28 Dec 2019
Empirical Study of Off-Policy Policy Evaluation for Reinforcement Learning
Cameron Voloshin
Hoang Minh Le
Nan Jiang
Yisong Yue
OffRL
30
152
0
15 Nov 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Benchmarking Batch Deep Reinforcement Learning Algorithms
Shih-Han Chou
Wen-Yen Chang
W. Hsu
Jianlong Fu
OffRL
21
182
0
03 Oct 2019
RecSim: A Configurable Simulation Platform for Recommender Systems
Eugene Ie
Chih-Wei Hsu
Martin Mladenov
Vihan Jain
Sanmit Narvekar
Jing Wang
Rui Wu
Craig Boutilier
30
178
0
11 Sep 2019
rlpyt: A Research Code Base for Deep Reinforcement Learning in PyTorch
Adam Stooke
Pieter Abbeel
OffRL
24
96
0
03 Sep 2019
Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology
Eugene Ie
Vihan Jain
Jing Wang
Sanmit Narvekar
Ritesh Agarwal
...
Vince Gatto
Paul Covington
Jim McFadden
Tushar Chandra
Craig Boutilier
OffRL
24
69
0
29 May 2019
Advantage Amplification in Slowly Evolving Latent-State Environments
Martin Mladenov
Ofer Meshi
Jayden Ooi
Dale Schuurmans
Craig Boutilier
OffRL
20
9
0
29 May 2019
Lessons from Contextual Bandit Learning in a Customer Support Bot
Nikos Karampatziakis
Sebastian Kochman
Jade Huang
Paul Mineiro
Kathy Osborne
Weizhu Chen
15
6
0
06 May 2019
Neural Packet Classification
Eric Liang
Hang Zhu
Xin Jin
Ion Stoica
OffRL
35
120
0
27 Feb 2019
1