Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.13395
Cited By
v1
v2
v3
v4
v5 (latest)
Accelerating SGD with momentum for over-parameterized learning
31 October 2018
Chaoyue Liu
M. Belkin
ODL
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Accelerating SGD with momentum for over-parameterized learning"
9 / 9 papers shown
Title
On the Computational Inefficiency of Large Batch Sizes for Stochastic Gradient Descent
Noah Golmant
N. Vemuri
Z. Yao
Vladimir Feinberg
A. Gholami
Kai Rothauge
Michael W. Mahoney
Joseph E. Gonzalez
75
73
0
30 Nov 2018
Fast and Faster Convergence of SGD for Over-Parameterized Models and an Accelerated Perceptron
Sharan Vaswani
Francis R. Bach
Mark Schmidt
80
298
0
16 Oct 2018
On the insufficiency of existing momentum schemes for Stochastic Optimization
Rahul Kidambi
Praneeth Netrapalli
Prateek Jain
Sham Kakade
ODL
83
119
0
15 Mar 2018
To understand deep learning we need to understand kernel learning
M. Belkin
Siyuan Ma
Soumik Mandal
65
419
0
05 Feb 2018
The Power of Interpolation: Understanding the Effectiveness of SGD in Modern Over-parametrized Learning
Siyuan Ma
Raef Bassily
M. Belkin
79
289
0
18 Dec 2017
Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour
Priya Goyal
Piotr Dollár
Ross B. Girshick
P. Noordhuis
Lukasz Wesolowski
Aapo Kyrola
Andrew Tulloch
Yangqing Jia
Kaiming He
3DH
128
3,685
0
08 Jun 2017
Understanding deep learning requires rethinking generalization
Chiyuan Zhang
Samy Bengio
Moritz Hardt
Benjamin Recht
Oriol Vinyals
HAI
345
4,629
0
10 Nov 2016
An Analysis of Deep Neural Network Models for Practical Applications
A. Canziani
Adam Paszke
Eugenio Culurciello
88
1,168
0
24 May 2016
In Search of the Real Inductive Bias: On the Role of Implicit Regularization in Deep Learning
Behnam Neyshabur
Ryota Tomioka
Nathan Srebro
AI4CE
94
660
0
20 Dec 2014
1