ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.13258
  4. Cited By
On Fast Leverage Score Sampling and Optimal Learning

On Fast Leverage Score Sampling and Optimal Learning

31 October 2018
Alessandro Rudi
Daniele Calandriello
Luigi Carratino
Lorenzo Rosasco
ArXivPDFHTML

Papers citing "On Fast Leverage Score Sampling and Optimal Learning"

17 / 17 papers shown
Title
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Embrace rejection: Kernel matrix approximation by accelerated randomly pivoted Cholesky
Ethan N. Epperly
J. Tropp
R. Webber
34
4
0
04 Oct 2024
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Christopher Musco
R. Teal Witter
FAtt
FedML
TDI
55
2
0
02 Oct 2024
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via
  Leverage Scores Sampling
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic
Nicolas Schreuder
Ernesto De Vito
Lorenzo Rosasco
32
3
0
22 Nov 2023
Boosting Nyström Method
Boosting Nyström Method
Keaton Hamm
Zhaoying Lu
Wenbo Ouyang
Hao Helen Zhang
32
0
0
21 Feb 2023
On The Relative Error of Random Fourier Features for Preserving Kernel
  Distance
On The Relative Error of Random Fourier Features for Preserving Kernel Distance
Kuan Cheng
S. Jiang
Luojian Wei
Zhide Wei
52
1
0
01 Oct 2022
Error Analysis of Tensor-Train Cross Approximation
Error Analysis of Tensor-Train Cross Approximation
Zhen Qin
Alexander Lidiak
Zhexuan Gong
Gongguo Tang
M. Wakin
Zhihui Zhu
33
9
0
09 Jul 2022
Fast Kernel Methods for Generic Lipschitz Losses via $p$-Sparsified
  Sketches
Fast Kernel Methods for Generic Lipschitz Losses via ppp-Sparsified Sketches
T. Ahmad
Pierre Laforgue
Florence dÁlché-Buc
19
5
0
08 Jun 2022
Markov subsampling based Huber Criterion
Markov subsampling based Huber Criterion
Tieliang Gong
Yuxin Dong
Hong Chen
B. Dong
Chen Li
21
2
0
12 Dec 2021
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines
Towards a Unified Quadrature Framework for Large-Scale Kernel Machines
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
24
4
0
03 Nov 2020
Sampling from a $k$-DPP without looking at all items
Sampling from a kkk-DPP without looking at all items
Daniele Calandriello
Michal Derezinski
Michal Valko
32
23
0
30 Jun 2020
Ensemble Kernel Methods, Implicit Regularization and Determinantal Point
  Processes
Ensemble Kernel Methods, Implicit Regularization and Determinantal Point Processes
J. Schreurs
Michaël Fanuel
Johan A. K. Suykens
18
2
0
24 Jun 2020
Determinantal Point Processes in Randomized Numerical Linear Algebra
Determinantal Point Processes in Randomized Numerical Linear Algebra
Michal Derezinski
Michael W. Mahoney
34
77
0
07 May 2020
Random Features for Kernel Approximation: A Survey on Algorithms,
  Theory, and Beyond
Random Features for Kernel Approximation: A Survey on Algorithms, Theory, and Beyond
Fanghui Liu
Xiaolin Huang
Yudong Chen
Johan A. K. Suykens
BDL
46
172
0
23 Apr 2020
Importance Sampling via Local Sensitivity
Importance Sampling via Local Sensitivity
Anant Raj
Cameron Musco
Lester W. Mackey
18
6
0
04 Nov 2019
Nyström landmark sampling and regularized Christoffel functions
Nyström landmark sampling and regularized Christoffel functions
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
26
10
0
29 May 2019
Spatial Analysis Made Easy with Linear Regression and Kernels
Spatial Analysis Made Easy with Linear Regression and Kernels
Philip Milton
E. Giorgi
Samir Bhatt
27
18
0
22 Feb 2019
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
86
281
0
09 Aug 2012
1