ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.12862
  4. Cited By
Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

Optimally Weighted PCA for High-Dimensional Heteroscedastic Data

30 October 2018
David Hong
Fan Yang
Jeffrey A. Fessler
Laura Balzano
ArXivPDFHTML

Papers citing "Optimally Weighted PCA for High-Dimensional Heteroscedastic Data"

6 / 6 papers shown
Title
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
ALPCAH: Subspace Learning for Sample-wise Heteroscedastic Data
Javier Salazar Cavazos
Jeffrey A. Fessler
Laura Balzano
31
2
0
12 May 2025
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in
  heteroskedastic PCA
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
40
4
0
10 Mar 2023
Personalized PCA: Decoupling Shared and Unique Features
Personalized PCA: Decoupling Shared and Unique Features
Naichen Shi
Raed Al Kontar
30
14
0
17 Jul 2022
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
40
19
0
10 Jan 2021
Rapid evaluation of the spectral signal detection threshold and
  Stieltjes transform
Rapid evaluation of the spectral signal detection threshold and Stieltjes transform
W. Leeb
27
7
0
26 Apr 2019
Optimal spectral shrinkage and PCA with heteroscedastic noise
Optimal spectral shrinkage and PCA with heteroscedastic noise
Qiangqiang Wu
Yanjie Liang
25
25
0
06 Nov 2018
1