Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.12042
Cited By
Logit Pairing Methods Can Fool Gradient-Based Attacks
29 October 2018
Marius Mosbach
Maksym Andriushchenko
T. A. Trost
Matthias Hein
Dietrich Klakow
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Logit Pairing Methods Can Fool Gradient-Based Attacks"
28 / 28 papers shown
Title
Standard-Deviation-Inspired Regularization for Improving Adversarial Robustness
Olukorede Fakorede
Modeste Atsague
Jin Tian
AAML
42
0
0
31 Dec 2024
Towards Unified Robustness Against Both Backdoor and Adversarial Attacks
Zhenxing Niu
Yuyao Sun
Qiguang Miao
Rong Jin
Gang Hua
AAML
46
6
0
28 May 2024
Optimization and Optimizers for Adversarial Robustness
Hengyue Liang
Buyun Liang
Le Peng
Ying Cui
Tim Mitchell
Ju Sun
AAML
28
5
0
23 Mar 2023
Sparsity Winning Twice: Better Robust Generalization from More Efficient Training
Tianlong Chen
Zhenyu Zhang
Pengju Wang
Santosh Balachandra
Haoyu Ma
Zehao Wang
Zhangyang Wang
OOD
AAML
100
47
0
20 Feb 2022
Improving Robustness by Enhancing Weak Subnets
Yong Guo
David Stutz
Bernt Schiele
AAML
35
15
0
30 Jan 2022
Constrained Gradient Descent: A Powerful and Principled Evasion Attack Against Neural Networks
Weiran Lin
Keane Lucas
Lujo Bauer
Michael K. Reiter
Mahmood Sharif
AAML
31
5
0
28 Dec 2021
Data Augmentation Can Improve Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
34
271
0
09 Nov 2021
Improving Robustness using Generated Data
Sven Gowal
Sylvestre-Alvise Rebuffi
Olivia Wiles
Florian Stimberg
D. A. Calian
Timothy A. Mann
36
294
0
18 Oct 2021
Understanding the Logit Distributions of Adversarially-Trained Deep Neural Networks
Landan Seguin
A. Ndirango
Neeli Mishra
SueYeon Chung
Tyler Lee
OOD
25
2
0
26 Aug 2021
NoiLIn: Improving Adversarial Training and Correcting Stereotype of Noisy Labels
Jingfeng Zhang
Xilie Xu
Bo Han
Tongliang Liu
Gang Niu
Li-zhen Cui
Masashi Sugiyama
NoLa
AAML
23
9
0
31 May 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
36
270
0
02 Mar 2021
RobustBench: a standardized adversarial robustness benchmark
Francesco Croce
Maksym Andriushchenko
Vikash Sehwag
Edoardo Debenedetti
Nicolas Flammarion
M. Chiang
Prateek Mittal
Matthias Hein
VLM
234
680
0
19 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
324
0
07 Oct 2020
Label Smoothing and Adversarial Robustness
Chaohao Fu
Hongbin Chen
Na Ruan
Weijia Jia
AAML
16
12
0
17 Sep 2020
Witches' Brew: Industrial Scale Data Poisoning via Gradient Matching
Jonas Geiping
Liam H. Fowl
Yifan Jiang
W. Czaja
Gavin Taylor
Michael Moeller
Tom Goldstein
AAML
21
215
0
04 Sep 2020
Adversarial Training against Location-Optimized Adversarial Patches
Sukrut Rao
David Stutz
Bernt Schiele
AAML
19
91
0
05 May 2020
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
75
99
0
20 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
787
0
26 Feb 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
99
1,159
0
12 Jan 2020
The Threat of Adversarial Attacks on Machine Learning in Network Security -- A Survey
Olakunle Ibitoye
Rana Abou-Khamis
Mohamed el Shehaby
Ashraf Matrawy
M. O. Shafiq
AAML
37
68
0
06 Nov 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
43
475
0
03 Jul 2019
Intriguing properties of adversarial training at scale
Cihang Xie
Alan Yuille
AAML
13
68
0
10 Jun 2019
Provably Robust Boosted Decision Stumps and Trees against Adversarial Attacks
Maksym Andriushchenko
Matthias Hein
28
61
0
08 Jun 2019
ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation
Yuzhe Yang
Guo Zhang
Dina Katabi
Zhi Xu
AAML
15
168
0
28 May 2019
Adversarial Training for Free!
Ali Shafahi
Mahyar Najibi
Amin Ghiasi
Zheng Xu
John P. Dickerson
Christoph Studer
L. Davis
Gavin Taylor
Tom Goldstein
AAML
68
1,231
0
29 Apr 2019
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
20
30
0
27 Mar 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
34
720
0
28 Jan 2019
Provable Robustness of ReLU networks via Maximization of Linear Regions
Francesco Croce
Maksym Andriushchenko
Matthias Hein
31
166
0
17 Oct 2018
1