Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11914
Cited By
Rademacher Complexity for Adversarially Robust Generalization
29 October 2018
Dong Yin
Kannan Ramchandran
Peter L. Bartlett
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Rademacher Complexity for Adversarially Robust Generalization"
50 / 62 papers shown
Title
Wasserstein Distributionally Robust Nonparametric Regression
Changyu Liu
Yuling Jiao
Junhui Wang
Jian Huang
OOD
34
0
0
12 May 2025
Risk Analysis and Design Against Adversarial Actions
M. Campi
A. Carè
Luis G. Crespo
S. Garatti
Federico A. Ramponi
AAML
168
0
0
02 May 2025
DONOD: Robust and Generalizable Instruction Fine-Tuning for LLMs via Model-Intrinsic Dataset Pruning
Jucheng Hu
Steve Yang
Dongzhan Zhou
Lijun Wu
34
0
0
21 Apr 2025
Adaptive Retrieval Without Self-Knowledge? Bringing Uncertainty Back Home
Viktor Moskvoretskii
M. Lysyuk
Mikhail Salnikov
Nikolay Ivanov
Sergey Pletenev
Daria Galimzianova
Nikita Krayko
Vasily Konovalov
Irina Nikishina
Alexander Panchenko
RALM
76
4
0
24 Feb 2025
Understanding Generalization of Federated Learning: the Trade-off between Model Stability and Optimization
Dun Zeng
Zheshun Wu
Shiyu Liu
Yu Pan
Xiaoying Tang
Zenglin Xu
MLT
FedML
89
1
0
25 Nov 2024
Efficient Optimization Algorithms for Linear Adversarial Training
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
53
1
0
16 Oct 2024
Uniformly Stable Algorithms for Adversarial Training and Beyond
Jiancong Xiao
Jiawei Zhang
Zhimin Luo
Asuman Ozdaglar
AAML
48
0
0
03 May 2024
Asymptotic Behavior of Adversarial Training Estimator under
ℓ
∞
\ell_\infty
ℓ
∞
-Perturbation
Yiling Xie
Xiaoming Huo
36
2
0
27 Jan 2024
Better Representations via Adversarial Training in Pre-Training: A Theoretical Perspective
Yue Xing
Xiaofeng Lin
Qifan Song
Yi Tian Xu
Belinda Zeng
Guang Cheng
SSL
26
0
0
26 Jan 2024
PAC-Bayesian Spectrally-Normalized Bounds for Adversarially Robust Generalization
Jiancong Xiao
Ruoyu Sun
Zhimin Luo
AAML
38
6
0
09 Oct 2023
It Is All About Data: A Survey on the Effects of Data on Adversarial Robustness
Peiyu Xiong
Michael W. Tegegn
Jaskeerat Singh Sarin
Shubhraneel Pal
Julia Rubin
SILM
AAML
32
8
0
17 Mar 2023
Demystifying Causal Features on Adversarial Examples and Causal Inoculation for Robust Network by Adversarial Instrumental Variable Regression
Junho Kim
Byung-Kwan Lee
Yonghyun Ro
CML
AAML
28
18
0
02 Mar 2023
AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical Applications with Categorical Inputs
Helene Orsini
Hongyan Bao
Yujun Zhou
Xiangrui Xu
Yufei Han
Longyang Yi
Wei Wang
Xin Gao
Xiangliang Zhang
AAML
44
1
0
13 Dec 2022
Leveraging Unlabeled Data to Track Memorization
Mahsa Forouzesh
Hanie Sedghi
Patrick Thiran
NoLa
TDI
34
4
0
08 Dec 2022
Adversarial Rademacher Complexity of Deep Neural Networks
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Zhimin Luo
AAML
17
22
0
27 Nov 2022
When are Local Queries Useful for Robust Learning?
Pascale Gourdeau
Varun Kanade
Marta Z. Kwiatkowska
J. Worrell
OOD
37
1
0
12 Oct 2022
Stability Analysis and Generalization Bounds of Adversarial Training
Jiancong Xiao
Yanbo Fan
Ruoyu Sun
Jue Wang
Zhimin Luo
AAML
32
30
0
03 Oct 2022
Robust Empirical Risk Minimization with Tolerance
Robi Bhattacharjee
Max Hopkins
Akash Kumar
Hantao Yu
Kamalika Chaudhuri
OOD
33
8
0
02 Oct 2022
Adaptive Smoothness-weighted Adversarial Training for Multiple Perturbations with Its Stability Analysis
Jiancong Xiao
Zeyu Qin
Yanbo Fan
Baoyuan Wu
Jue Wang
Zhimin Luo
AAML
31
7
0
02 Oct 2022
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
The Consistency of Adversarial Training for Binary Classification
Natalie Frank
Jonathan Niles-Weed
AAML
43
5
0
18 Jun 2022
Building Robust Ensembles via Margin Boosting
Dinghuai Zhang
Hongyang R. Zhang
Aaron Courville
Yoshua Bengio
Pradeep Ravikumar
A. Suggala
AAML
UQCV
48
15
0
07 Jun 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
39
13
0
22 Mar 2022
Robustly-reliable learners under poisoning attacks
Maria-Florina Balcan
Avrim Blum
Steve Hanneke
Dravyansh Sharma
AAML
OOD
26
14
0
08 Mar 2022
Why adversarial training can hurt robust accuracy
Jacob Clarysse
Julia Hörrmann
Fanny Yang
AAML
13
18
0
03 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
A Characterization of Semi-Supervised Adversarially-Robust PAC Learnability
Idan Attias
Steve Hanneke
Yishay Mansour
32
15
0
11 Feb 2022
An Exploration of Multicalibration Uniform Convergence Bounds
Harrison Rosenberg
Robi Bhattacharjee
Kassem Fawaz
S. Jha
22
1
0
09 Feb 2022
Benign Overfitting in Adversarially Robust Linear Classification
Jinghui Chen
Yuan Cao
Quanquan Gu
AAML
SILM
34
10
0
31 Dec 2021
On the Existence of the Adversarial Bayes Classifier (Extended Version)
Pranjal Awasthi
Natalie Frank
M. Mohri
31
24
0
03 Dec 2021
Transductive Robust Learning Guarantees
Omar Montasser
Steve Hanneke
Nathan Srebro
20
13
0
20 Oct 2021
Classification and Adversarial examples in an Overparameterized Linear Model: A Signal Processing Perspective
Adhyyan Narang
Vidya Muthukumar
A. Sahai
SILM
AAML
36
1
0
27 Sep 2021
Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models
Kun Zhou
Wayne Xin Zhao
Sirui Wang
Fuzheng Zhang
Wei Wu
Ji-Rong Wen
AAML
29
7
0
13 Sep 2021
Regional Adversarial Training for Better Robust Generalization
Chuanbiao Song
Yanbo Fan
Yichen Yang
Baoyuan Wu
Yiming Li
Zhifeng Li
Kun He
AAML
OOD
18
6
0
02 Sep 2021
Attack Transferability Characterization for Adversarially Robust Multi-label Classification
Zhuo Yang
Yufei Han
Xiangliang Zhang
AAML
23
4
0
29 Jun 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
13
213
0
26 May 2021
Improved OOD Generalization via Adversarial Training and Pre-training
Mingyang Yi
Lu Hou
Jiacheng Sun
Lifeng Shang
Xin Jiang
Qun Liu
Zhi-Ming Ma
VLM
31
83
0
24 May 2021
Auto-weighted Robust Federated Learning with Corrupted Data Sources
Shenghui Li
Edith C.H. Ngai
Fanghua Ye
Thiemo Voigt
FedML
27
28
0
14 Jan 2021
Query complexity of adversarial attacks
Grzegorz Gluch
R. Urbanke
AAML
19
5
0
02 Oct 2020
How benign is benign overfitting?
Amartya Sanyal
P. Dokania
Varun Kanade
Philip Torr
NoLa
AAML
23
57
0
08 Jul 2020
A Le Cam Type Bound for Adversarial Learning and Applications
Qiuling Xu
Kevin Bello
Jean Honorio
AAML
23
1
0
01 Jul 2020
Sharp Statistical Guarantees for Adversarially Robust Gaussian Classification
Chen Dan
Yuting Wei
Pradeep Ravikumar
26
45
0
29 Jun 2020
Meta Transition Adaptation for Robust Deep Learning with Noisy Labels
Jun Shu
Qian Zhao
Zengben Xu
Deyu Meng
NoLa
31
29
0
10 Jun 2020
Provable tradeoffs in adversarially robust classification
Yan Sun
Hamed Hassani
David Hong
Alexander Robey
23
53
0
09 Jun 2020
Estimating Principal Components under Adversarial Perturbations
Pranjal Awasthi
Xue Chen
Aravindan Vijayaraghavan
AAML
17
2
0
31 May 2020
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
50
16
0
28 May 2020
PatchGuard: A Provably Robust Defense against Adversarial Patches via Small Receptive Fields and Masking
Chong Xiang
A. Bhagoji
Vikash Sehwag
Prateek Mittal
AAML
30
29
0
17 May 2020
Efficiently Learning Adversarially Robust Halfspaces with Noise
Omar Montasser
Surbhi Goel
Ilias Diakonikolas
Nathan Srebro
29
32
0
15 May 2020
Adversarial Learning Guarantees for Linear Hypotheses and Neural Networks
Pranjal Awasthi
Natalie Frank
M. Mohri
AAML
34
56
0
28 Apr 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
785
0
26 Feb 2020
1
2
Next