Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11890
Cited By
Active Learning of Uniformly Accurate Inter-atomic Potentials for Materials Simulation
28 October 2018
Linfeng Zhang
De-Ye Lin
Han Wang
R. Car
E. Weinan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Active Learning of Uniformly Accurate Inter-atomic Potentials for Materials Simulation"
37 / 37 papers shown
Title
CrySPAI: A new Crystal Structure Prediction Software Based on Artificial Intelligence
Zongguo Wang
Ziyi Chen
Yang Yuan
Yangang Wang
41
0
0
28 Jan 2025
Evaluation of uncertainty estimations for Gaussian process regression based machine learning interatomic potentials
Matthias Holzenkamp
Dongyu Lyu
Ulrich Kleinekathöfer
Peter Zaspel
35
0
0
10 Jan 2025
Implicit Delta Learning of High Fidelity Neural Network Potentials
Stephan Thaler
Cristian Gabellini
Nikhil Shenoy
Prudencio Tossou
AI4CE
90
0
0
08 Dec 2024
Learning Macroscopic Dynamics from Partial Microscopic Observations
Mengyi Chen
Qianxiao Li
AI4CE
41
0
0
31 Oct 2024
Accelerating the Training and Improving the Reliability of Machine-Learned Interatomic Potentials for Strongly Anharmonic Materials through Active Learning
Kisung Kang
Thomas A. R. Purcell
Christian Carbogno
Matthias Scheffler
AI4CE
32
0
0
18 Sep 2024
Bounds on the Generalization Error in Active Learning
Vincent Menden
Yahya Saleh
Armin Iske
20
0
0
10 Sep 2024
Physics-informed active learning for accelerating quantum chemical simulations
Yi-Fan Hou
Lina Zhang
Quanhao Zhang
Fuchun Ge
Pavlo O. Dral
AI4CE
18
5
0
18 Apr 2024
EL-MLFFs: Ensemble Learning of Machine Leaning Force Fields
Bangchen Yin
Yue Yin
Yuda W. Tang
Hai Xiao
24
0
0
26 Mar 2024
Deciphering diffuse scattering with machine learning and the equivariant foundation model: The case of molten FeO
Ganesh Sivaraman
C. Benmore
AI4CE
26
0
0
01 Mar 2024
Mitigating distribution shift in machine learning-augmented hybrid simulation
Jiaxi Zhao
Qianxiao Li
36
3
0
17 Jan 2024
Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials
Viktor Zaverkin
David Holzmüller
Henrik Christiansen
Federico Errica
Francesco Alesiani
Makoto Takamoto
Mathias Niepert
Johannes Kastner
AI4CE
36
13
0
03 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
28
15
0
03 Dec 2023
Accurate machine learning force fields via experimental and simulation data fusion
Sebastien Röcken
Julija Zavadlav
AI4CE
29
12
0
17 Aug 2023
Active Learning in Physics: From 101, to Progress, and Perspective
Yongcheng Ding
J. D. Martín-Guerrero
Yolanda Vives-Gilabert
Xi Chen
AI4CE
38
3
0
08 Jul 2023
Uncertainty Quantification in Deep Neural Networks through Statistical Inference on Latent Space
Luigi Sbailò
L. Ghiringhelli
UQCV
BDL
8
2
0
18 May 2023
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
Julija Zavadlav
35
21
0
15 Dec 2022
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
Generalizability of Functional Forms for Interatomic Potential Models Discovered by Symbolic Regression
Alberto Hernandez
Tim Mueller
30
1
0
27 Oct 2022
When does deep learning fail and how to tackle it? A critical analysis on polymer sequence-property surrogate models
Himanshu
T. Patra
AI4CE
15
0
0
12 Oct 2022
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
37
19
0
15 Sep 2022
DPA-1: Pretraining of Attention-based Deep Potential Model for Molecular Simulation
Duoduo Zhang
Hangrui Bi
Fu-Zhi Dai
Wanrun Jiang
Linfeng Zhang
Han Wang
AI4CE
40
37
0
17 Aug 2022
DeePKS+ABACUS as a Bridge between Expensive Quantum Mechanical Models and Machine Learning Potentials
Wenfei Li
Q. Ou
Yixiao Chen
Yunlv Cao
Renxi Liu
...
Chun Cai
Xifan Wu
Han Wang
Mohan Chen
Linfeng Zhang
14
8
0
21 Jun 2022
Fast and Sample-Efficient Interatomic Neural Network Potentials for Molecules and Materials Based on Gaussian Moments
Viktor Zaverkin
David Holzmüller
Ingo Steinwart
Johannes Kastner
29
19
0
20 Sep 2021
Active Learning for the Optimal Design of Multinomial Classification in Physics
Yongcheng Ding
J. D. Martín-Guerrero
Yu-Chen Song
José Rafael Magdalena Benedicto
Xi Chen
21
5
0
17 Sep 2021
Active Learning for Saddle Point Calculation
Shuting Gu
Hongqiao Wang
Xiaoping Zhou
20
5
0
10 Aug 2021
Learning neural network potentials from experimental data via Differentiable Trajectory Reweighting
Stephan Thaler
Julija Zavadlav
22
66
0
02 Jun 2021
Twin Neural Network Regression
S. J. Wetzel
Kevin Ryczko
R. Melko
Isaac Tamblyn
UQCV
28
11
0
29 Dec 2020
Machine Learning and Computational Mathematics
Weinan E
PINN
AI4CE
32
61
0
23 Sep 2020
OnsagerNet: Learning Stable and Interpretable Dynamics using a Generalized Onsager Principle
Haijun Yu
Xinyuan Tian
Weinan E
Qianxiao Li
AI4CE
30
42
0
06 Sep 2020
Atomistic Structure Learning Algorithm with surrogate energy model relaxation
H. L. Mortensen
S. A. Meldgaard
M. K. Bisbo
Mads-Peter V. Christiansen
B. Hammer
6
17
0
15 Jul 2020
Integrating Machine Learning with Physics-Based Modeling
E. Weinan
Jiequn Han
Linfeng Zhang
PINN
AI4CE
17
24
0
04 Jun 2020
Automated discovery of a robust interatomic potential for aluminum
Justin S. Smith
B. Nebgen
N. Mathew
Jie Chen
Nicholas Lubbers
...
S. Tretiak
H. Nam
T. Germann
S. Fensin
K. Barros
16
79
0
10 Mar 2020
Large deviations for the perceptron model and consequences for active learning
Hugo Cui
Luca Saglietti
Lenka Zdeborová
11
11
0
09 Dec 2019
Deep Density: circumventing the Kohn-Sham equations via symmetry preserving neural networks
Leonardo Zepeda-Núnez
Yixiao Chen
Jiefu Zhang
Weile Jia
Linfeng Zhang
Lin Lin
20
33
0
27 Nov 2019
Neural Network Based in Silico Simulation of Combustion Reactions
Jinzhe Zeng
Liqun Cao
Mingyuan Xu
Tong Zhu
John Z. H. Zhang
AI4CE
11
9
0
27 Nov 2019
Machine Learning Inter-Atomic Potentials Generation Driven by Active Learning: A Case Study for Amorphous and Liquid Hafnium dioxide
Ganesh Sivaraman
A. Krishnamoorthy
Matthias Baur
Christian Holm
M. Stan
Gábor Csányi
C. Benmore
Á. Vázquez-Mayagoitia
AI4CE
11
10
0
22 Oct 2019
Deep learning observables in computational fluid dynamics
K. Lye
Siddhartha Mishra
Deep Ray
OOD
AI4CE
18
158
0
07 Mar 2019
1