Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11646
Cited By
Removing Hidden Confounding by Experimental Grounding
27 October 2018
Nathan Kallus
A. Puli
Uri Shalit
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Removing Hidden Confounding by Experimental Grounding"
20 / 20 papers shown
Title
A Cautionary Tale on Integrating Studies with Disparate Outcome Measures for Causal Inference
Harsh Parikh
Trang Quynh Nguyen
Elizabeth A. Stuart
Kara E. Rudolph
Caleb H. Miles
CML
17
0
0
16 May 2025
Nonparametric Heterogeneous Long-term Causal Effect Estimation via Data Combination
Weilin Chen
Ruichu Cai
Junjie Wan
Zeqin Yang
José Miguel Hernández-Lobato
55
1
0
26 Feb 2025
Long-term Causal Inference via Modeling Sequential Latent Confounding
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
José Miguel Hernández-Lobato
CML
84
1
0
26 Feb 2025
Automatic Double Reinforcement Learning in Semiparametric Markov Decision Processes with Applications to Long-Term Causal Inference
Lars van der Laan
David Hubbard
Allen Tran
Nathan Kallus
Aurélien F. Bibaut
OffRL
39
0
0
12 Jan 2025
Benchmarks for Reinforcement Learning with Biased Offline Data and Imperfect Simulators
Ori Linial
Guy Tennenholtz
Uri Shalit
OffRL
46
1
0
30 Jun 2024
Adaptive-TMLE for the Average Treatment Effect based on Randomized Controlled Trial Augmented with Real-World Data
Mark van der Laan
Sky Qiu
L. Laan
Lars van der Laan
41
8
0
12 May 2024
Strategy to select most efficient RCT samples based on observational data
Wenqi Shi
Xi Lin
19
0
0
09 Nov 2022
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OOD
CML
25
20
0
08 Oct 2022
Falsification before Extrapolation in Causal Effect Estimation
Zeshan Hussain
Michael Oberst
M. Shih
David Sontag
CML
45
8
0
27 Sep 2022
Detecting hidden confounding in observational data using multiple environments
R. Karlsson
Jesse H. Krijthe
CML
OOD
42
12
0
27 May 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
52
29
0
25 Feb 2022
ADCB: An Alzheimer's disease benchmark for evaluating observational estimators of causal effects
N. M. Kinyanjui
Fredrik D. Johansson
CML
27
0
0
12 Nov 2021
Conditional Cross-Design Synthesis Estimators for Generalizability in Medicaid
Irina Degtiar
T. Layton
Jacob Wallace
Sherri Rose
CML
46
5
0
27 Sep 2021
Obtaining Causal Information by Merging Datasets with MAXENT
Sergio Hernan Garrido Mejia
Elke Kirschbaum
Dominik Janzing
CML
18
9
0
15 Jul 2021
Quantum causal inference in the presence of hidden common causes: An entropic approach
Mohammad Ali Javidian
Vaneet Aggarwal
Z. Jacob
CML
13
2
0
24 Apr 2021
Causal Decision Making and Causal Effect Estimation Are Not the Same... and Why It Matters
Carlos Fernández-Loría
F. Provost
CML
11
42
0
08 Apr 2021
Multi-Source Causal Inference Using Control Variates
Wenshuo Guo
S. Wang
Peng Ding
Yixin Wang
Michael I. Jordan
CML
55
18
0
30 Mar 2021
A Review of Generalizability and Transportability
Irina Degtiar
Sherri Rose
CML
34
210
0
23 Feb 2021
Combining Observational and Experimental Datasets Using Shrinkage Estimators
Evan T. R. Rosenman
Guillaume W. Basse
Art B. Owen
Mike Baiocchi
CML
21
61
0
16 Feb 2020
A Survey of Learning Causality with Data: Problems and Methods
Ruocheng Guo
Lu Cheng
Jundong Li
P. R. Hahn
Huan Liu
CML
32
168
0
25 Sep 2018
1