Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.11509
Cited By
Neural Network-Based Approach to Phase Space Integration
26 October 2018
Matthew D. Klimek
M. Perelstein
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Network-Based Approach to Phase Space Integration"
8 / 8 papers shown
Title
Online Difficulty Filtering for Reasoning Oriented Reinforcement Learning
Sanghwan Bae
Jiwoo Hong
Min Young Lee
Hanbyul Kim
Jeongyeon Nam
Donghyun Kwak
OffRL
LRM
53
0
0
04 Apr 2025
Convolutional L2LFlows: Generating Accurate Showers in Highly Granular Calorimeters Using Convolutional Normalizing Flows
Thorsten Buss
F. Gaede
Gregor Kasieczka
Claudius Krause
David Shih
AI4CE
36
6
0
30 May 2024
Bayesian Modelling of Multivalued Power Curves from an Operational Wind Farm
L. Bull
P. Gardner
T. Rogers
N. Dervilis
E. Cross
E. Papatheou
A. E. Maguire
C. Campos
K. Worden
14
12
0
30 Nov 2021
Optimising simulations for diphoton production at hadron colliders using amplitude neural networks
Joseph Aylett-Bullock
S. Badger
Ryan Moodie
13
22
0
17 Jun 2021
Understanding Event-Generation Networks via Uncertainties
Marco Bellagente
Manuel Haussmann
Michel Luchmann
Tilman Plehn
BDL
23
55
0
09 Apr 2021
A Living Review of Machine Learning for Particle Physics
Matthew Feickert
Benjamin Nachman
KELM
AI4CE
27
178
0
02 Feb 2021
i-flow: High-dimensional Integration and Sampling with Normalizing Flows
Christina Gao
J. Isaacson
Claudius Krause
AI4CE
16
106
0
15 Jan 2020
How to GAN away Detector Effects
Marco Bellagente
A. Butter
Gregor Kasieczka
Tilman Plehn
R. Winterhalder
GAN
11
86
0
01 Dec 2019
1