ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.11203
  4. Cited By
CrystalGAN: Learning to Discover Crystallographic Structures with
  Generative Adversarial Networks

CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks

26 October 2018
Asma Nouira
Nataliya Sokolovska
J. Crivello
    GAN
ArXivPDFHTML

Papers citing "CrystalGAN: Learning to Discover Crystallographic Structures with Generative Adversarial Networks"

14 / 14 papers shown
Title
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
SymmCD: Symmetry-Preserving Crystal Generation with Diffusion Models
Daniel Levy
Siba Smarak Panigrahi
Sékou-Oumar Kaba
Qiang Zhu
Kin Long Kelvin Lee
Mikhail Galkin
Santiago Miret
Siamak Ravanbakhsh
317
12
0
05 Feb 2025
Generative Inverse Design of Crystal Structures via Diffusion Models
  with Transformers
Generative Inverse Design of Crystal Structures via Diffusion Models with Transformers
Izumi Takahara
Kiyou Shibata
Teruyasu Mizoguchi
DiffM
AI4CE
39
2
0
13 Jun 2024
Scalable Diffusion for Materials Generation
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
36
40
0
18 Oct 2023
Crystal Structure Prediction by Joint Equivariant Diffusion
Crystal Structure Prediction by Joint Equivariant Diffusion
Rui Jiao
Wen-bing Huang
Peijia Lin
Jiaqi Han
Pin Chen
Yutong Lu
Yang Liu
DiffM
32
62
0
30 Jul 2023
GraphGANFed: A Federated Generative Framework for Graph-Structured
  Molecules Towards Efficient Drug Discovery
GraphGANFed: A Federated Generative Framework for Graph-Structured Molecules Towards Efficient Drug Discovery
Daniel Manu
Jingjing Yao
Wuji Liu
Xiang Sun
FedML
38
7
0
11 Apr 2023
Artificial Intelligence in Material Engineering: A review on
  applications of AI in Material Engineering
Artificial Intelligence in Material Engineering: A review on applications of AI in Material Engineering
Lipichanda Goswami
Manoj Deka
Mohendra Roy
AI4CE
42
19
0
15 Sep 2022
SELFIES and the future of molecular string representations
SELFIES and the future of molecular string representations
Mario Krenn
Qianxiang Ai
Senja Barthel
Nessa Carson
Angelo Frei
...
Andrew Wang
Andrew D. White
Adamo Young
Rose Yu
A. Aspuru‐Guzik
43
150
0
31 Mar 2022
Physics Guided Deep Learning for Generative Design of Crystal Materials
  with Symmetry Constraints
Physics Guided Deep Learning for Generative Design of Crystal Materials with Symmetry Constraints
Yong Zhao
Edirisuriya M Dilanga Siriwardane
Zhenyao Wu
Nihang Fu
Mohammed Al-Fahdi
Ming Hu
Jianjun Hu
AI4CE
41
69
0
27 Mar 2022
Scalable deeper graph neural networks for high-performance materials
  property prediction
Scalable deeper graph neural networks for high-performance materials property prediction
Sadman Sadeed Omee
Steph-Yves M. Louis
Nihang Fu
Lai Wei
Sourin Dey
Rongzhi Dong
Qinyang Li
Jianjun Hu
75
73
0
25 Sep 2021
Polygrammar: Grammar for Digital Polymer Representation and Generation
Polygrammar: Grammar for Digital Polymer Representation and Generation
Minghao Guo
Wan Shou
L. Makatura
Timothy Erps
Michael Foshey
Wojciech Matusik
37
24
0
05 May 2021
Generative adversarial networks (GAN) based efficient sampling of
  chemical space for inverse design of inorganic materials
Generative adversarial networks (GAN) based efficient sampling of chemical space for inverse design of inorganic materials
Yabo Dan
Yong Zhao
Xiang Li
Shaobo Li
Ming Hu
Jianjun Hu
AI4CE
GAN
40
193
0
12 Nov 2019
Study of Deep Generative Models for Inorganic Chemical Compositions
Study of Deep Generative Models for Inorganic Chemical Compositions
Yoshihide Sawada
Koji Morikawa
Mikiya Fujii
GAN
37
13
0
25 Oct 2019
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Data-Driven Approach to Encoding and Decoding 3-D Crystal Structures
Jordan Hoffmann
Louis Maestrati
Yoshihide Sawada
Jian Tang
Jean Michel D. Sellier
Yoshua Bengio
DiffM
3DV
34
66
0
03 Sep 2019
Deep learning for molecular design - a review of the state of the art
Deep learning for molecular design - a review of the state of the art
Daniel C. Elton
Zois Boukouvalas
M. Fuge
Peter W. Chung
AI4CE
3DV
34
327
0
11 Mar 2019
1