Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.10151
Cited By
AUNet: Attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms
24 October 2018
Hui Sun
Cheng Li
Boqiang Liu
Hairong Zheng
David Dagan Feng
Shanshan Wang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AUNet: Attention-guided dense-upsampling networks for breast mass segmentation in whole mammograms"
5 / 5 papers shown
Title
Dynamic Snake Upsampling Operater and Boundary-Skeleton Weighted Loss for Tubular Structure Segmentation
Yiqi Chen
Ganghai Huang
Sheng Zhang
Jianglin Dai
36
0
0
13 May 2025
Morphology-Enhanced CAM-Guided SAM for weakly supervised Breast Lesion Segmentation
Xin Yue
Xiaoling Liu
Qing Zhao
Jianqiang Li
Changwei Song
Suqin Liu
Zhikai Yang
Guanghui Fu
MedIm
26
2
0
18 Nov 2023
SWIN-SFTNet : Spatial Feature Expansion and Aggregation using Swin Transformer For Whole Breast micro-mass segmentation
Sharif Amit Kamran
Khondker Fariha Hossain
Alireza Tavakkoli
G. Bebis
Salah A. Baker
ViT
14
4
0
16 Nov 2022
A Survey on Deep Learning in Medical Image Analysis
G. Litjens
Thijs Kooi
B. Bejnordi
A. Setio
F. Ciompi
Mohsen Ghafoorian
Jeroen van der Laak
Bram van Ginneken
C. I. Sánchez
OOD
283
10,613
0
19 Feb 2017
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
190
5,173
0
16 Sep 2016
1