Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.09648
Cited By
What can AI do for me: Evaluating Machine Learning Interpretations in Cooperative Play
23 October 2018
Shi Feng
Jordan L. Boyd-Graber
HAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"What can AI do for me: Evaluating Machine Learning Interpretations in Cooperative Play"
23 / 23 papers shown
Title
Overconfident and Unconfident AI Hinder Human-AI Collaboration
Jingshu Li
Yitian Yang
Renwen Zhang
Yi-Chieh Lee
40
1
0
12 Feb 2024
Towards the Visualization of Aggregated Class Activation Maps to Analyse the Global Contribution of Class Features
Igor Cherepanov
D. Sessler
Alex Ulmer
Hendrik Lücke-Tieke
Jörn Kohlhammer
FAtt
24
0
0
29 Jul 2023
In Search of Verifiability: Explanations Rarely Enable Complementary Performance in AI-Advised Decision Making
Raymond Fok
Daniel S. Weld
29
61
0
12 May 2023
Human-AI Collaboration: The Effect of AI Delegation on Human Task Performance and Task Satisfaction
Patrick Hemmer
Monika Westphal
Max Schemmer
S. Vetter
Michael Vossing
G. Satzger
52
42
0
16 Mar 2023
The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations
Angelos Chatzimparmpas
R. Martins
I. Jusufi
K. Kucher
Fabrice Rossi
A. Kerren
FAtt
26
160
0
22 Dec 2022
Advancing Human-AI Complementarity: The Impact of User Expertise and Algorithmic Tuning on Joint Decision Making
K. Inkpen
Shreya Chappidi
Keri Mallari
Besmira Nushi
Divya Ramesh
Pietro Michelucci
Vani Mandava
Libuvse Hannah Vepvrek
Gabrielle Quinn
36
45
0
16 Aug 2022
Visual correspondence-based explanations improve AI robustness and human-AI team accuracy
Giang Nguyen
Mohammad Reza Taesiri
Anh Totti Nguyen
30
42
0
26 Jul 2022
Use-Case-Grounded Simulations for Explanation Evaluation
Valerie Chen
Nari Johnson
Nicholay Topin
Gregory Plumb
Ameet Talwalkar
FAtt
ELM
22
24
0
05 Jun 2022
Towards a Science of Human-AI Decision Making: A Survey of Empirical Studies
Vivian Lai
Chacha Chen
Q. V. Liao
Alison Smith-Renner
Chenhao Tan
33
186
0
21 Dec 2021
Explainable Deep Learning in Healthcare: A Methodological Survey from an Attribution View
Di Jin
Elena Sergeeva
W. Weng
Geeticka Chauhan
Peter Szolovits
OOD
39
55
0
05 Dec 2021
Improving mathematical questioning in teacher training
Debajyoti Datta
Maria Phillips
J. Bywater
Jennifer L. Chiu
G. Watson
Laura E. Barnes
Donald E. Brown
27
0
0
02 Dec 2021
Teaching Humans When To Defer to a Classifier via Exemplars
Hussein Mozannar
Arvindmani Satyanarayan
David Sontag
36
43
0
22 Nov 2021
Revisiting Methods for Finding Influential Examples
Karthikeyan K
Anders Søgaard
TDI
16
30
0
08 Nov 2021
Interpreting Deep Learning Models in Natural Language Processing: A Review
Xiaofei Sun
Diyi Yang
Xiaoya Li
Tianwei Zhang
Yuxian Meng
Han Qiu
Guoyin Wang
Eduard H. Hovy
Jiwei Li
19
44
0
20 Oct 2021
A Framework for Evaluating Post Hoc Feature-Additive Explainers
Zachariah Carmichael
Walter J. Scheirer
FAtt
46
4
0
15 Jun 2021
Explaining the Road Not Taken
Hua Shen
Ting-Hao 'Kenneth' Huang
FAtt
XAI
27
9
0
27 Mar 2021
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
136
119
0
21 Jan 2021
A Game-Based Approach for Helping Designers Learn Machine Learning Concepts
Chelsea M. Myers
Jiachi Xie
Jichen Zhu
19
4
0
11 Sep 2020
Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
Gagan Bansal
Tongshuang Wu
Joyce Zhou
Raymond Fok
Besmira Nushi
Ece Kamar
Marco Tulio Ribeiro
Daniel S. Weld
42
581
0
26 Jun 2020
Towards Faithfully Interpretable NLP Systems: How should we define and evaluate faithfulness?
Alon Jacovi
Yoav Goldberg
XAI
22
567
0
07 Apr 2020
Evaluating Saliency Map Explanations for Convolutional Neural Networks: A User Study
Ahmed Alqaraawi
M. Schuessler
Philipp Weiß
Enrico Costanza
N. Bianchi-Berthouze
AAML
FAtt
XAI
33
197
0
03 Feb 2020
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
27
66
0
16 Jul 2019
On Human Predictions with Explanations and Predictions of Machine Learning Models: A Case Study on Deception Detection
Vivian Lai
Chenhao Tan
29
373
0
19 Nov 2018
1