ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09302
14
211

BioSentVec: creating sentence embeddings for biomedical texts

22 October 2018
Qingyu Chen
Yifan Peng
Zhiyong Lu
ArXivPDFHTML
Abstract

Sentence embeddings have become an essential part of today's natural language processing (NLP) systems, especially together advanced deep learning methods. Although pre-trained sentence encoders are available in the general domain, none exists for biomedical texts to date. In this work, we introduce BioSentVec: the first open set of sentence embeddings trained with over 30 million documents from both scholarly articles in PubMed and clinical notes in the MIMIC-III Clinical Database. We evaluate BioSentVec embeddings in two sentence pair similarity tasks in different text genres. Our benchmarking results demonstrate that the BioSentVec embeddings can better capture sentence semantics compared to the other competitive alternatives and achieve state-of-the-art performance in both tasks. We expect BioSentVec to facilitate the research and development in biomedical text mining and to complement the existing resources in biomedical word embeddings. BioSentVec is publicly available at https://github.com/ncbi-nlp/BioSentVec

View on arXiv
Comments on this paper