ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.09250
  4. Cited By
Optimal terminal dimensionality reduction in Euclidean space

Optimal terminal dimensionality reduction in Euclidean space

22 October 2018
Shyam Narayanan
Jelani Nelson
ArXivPDFHTML

Papers citing "Optimal terminal dimensionality reduction in Euclidean space"

4 / 4 papers shown
Title
On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss
  Embeddings of Low-Dimensional Submanifolds of $\mathbb{R}^N$
On Outer Bi-Lipschitz Extensions of Linear Johnson-Lindenstrauss Embeddings of Low-Dimensional Submanifolds of RN\mathbb{R}^NRN
M. Iwen
M. Roach
30
1
0
07 Jun 2022
Towards Optimal Lower Bounds for k-median and k-means Coresets
Towards Optimal Lower Bounds for k-median and k-means Coresets
Vincent Cohen-Addad
Kasper Green Larsen
David Saulpic
Chris Schwiegelshohn
31
50
0
25 Feb 2022
Coresets for Clustering in Euclidean Spaces: Importance Sampling is
  Nearly Optimal
Coresets for Clustering in Euclidean Spaces: Importance Sampling is Nearly Optimal
Lingxiao Huang
Nisheeth K. Vishnoi
31
77
0
14 Apr 2020
Nonlinear Dimension Reduction via Outer Bi-Lipschitz Extensions
Nonlinear Dimension Reduction via Outer Bi-Lipschitz Extensions
Christopher J. Shallue
K. Makarychev
Roy Frostig
Jascha Narain Sohl-Dickstein
27
33
0
08 Nov 2018
1