Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.09038
Cited By
Depth with Nonlinearity Creates No Bad Local Minima in ResNets
21 October 2018
Kenji Kawaguchi
Yoshua Bengio
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Depth with Nonlinearity Creates No Bad Local Minima in ResNets"
16 / 16 papers shown
Title
System Identification and Control Using Lyapunov-Based Deep Neural Networks without Persistent Excitation: A Concurrent Learning Approach
Rebecca G. Hart
Omkar Sudhir Patil
Zachary I. Bell
Warren E. Dixon
14
0
0
15 May 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
61
1
0
10 Jan 2025
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
21
9
0
15 Nov 2021
Deep Network Approximation: Achieving Arbitrary Accuracy with Fixed Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
56
36
0
06 Jul 2021
Learning distinct features helps, provably
Firas Laakom
Jenni Raitoharju
Alexandros Iosifidis
Moncef Gabbouj
MLT
36
6
0
10 Jun 2021
Optimal Approximation Rate of ReLU Networks in terms of Width and Depth
Zuowei Shen
Haizhao Yang
Shijun Zhang
103
115
0
28 Feb 2021
Advances in Electron Microscopy with Deep Learning
Jeffrey M. Ede
35
2
0
04 Jan 2021
Convergence Proof for Actor-Critic Methods Applied to PPO and RUDDER
Markus Holzleitner
Lukas Gruber
Jose A. Arjona-Medina
Johannes Brandstetter
Sepp Hochreiter
33
38
0
02 Dec 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
34
79
0
17 Sep 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
39
78
0
11 Mar 2020
Insights into Ordinal Embedding Algorithms: A Systematic Evaluation
L. C. Vankadara
Siavash Haghiri
Michael Lohaus
Faiz Ul Wahab
U. V. Luxburg
15
8
0
03 Dec 2019
Deep Network Approximation Characterized by Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
23
182
0
13 Jun 2019
Every Local Minimum Value is the Global Minimum Value of Induced Model in Non-convex Machine Learning
Kenji Kawaguchi
Jiaoyang Huang
L. Kaelbling
AAML
24
18
0
07 Apr 2019
Nonlinear Approximation via Compositions
Zuowei Shen
Haizhao Yang
Shijun Zhang
26
92
0
26 Feb 2019
Benefits of depth in neural networks
Matus Telgarsky
153
602
0
14 Feb 2016
The Loss Surfaces of Multilayer Networks
A. Choromańska
Mikael Henaff
Michaël Mathieu
Gerard Ben Arous
Yann LeCun
ODL
183
1,185
0
30 Nov 2014
1