ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.08683
  4. Cited By
Taking Advantage of Multitask Learning for Fair Classification

Taking Advantage of Multitask Learning for Fair Classification

19 October 2018
L. Oneto
Michele Donini
Amon Elders
Massimiliano Pontil
    FaML
ArXivPDFHTML

Papers citing "Taking Advantage of Multitask Learning for Fair Classification"

13 / 13 papers shown
Title
Fairness in Multi-Task Learning via Wasserstein Barycenters
Fairness in Multi-Task Learning via Wasserstein Barycenters
Franccois Hu
Philipp Ratz
Arthur Charpentier
44
10
0
16 Jun 2023
Bipol: Multi-axes Evaluation of Bias with Explainability in Benchmark
  Datasets
Bipol: Multi-axes Evaluation of Bias with Explainability in Benchmark Datasets
Tosin Adewumi
Isabella Sodergren
Lama Alkhaled
Sana Sabah Sabry
F. Liwicki
Marcus Liwicki
41
4
0
28 Jan 2023
A Survey on Fairness for Machine Learning on Graphs
A Survey on Fairness for Machine Learning on Graphs
Charlotte Laclau
C. Largeron
Manvi Choudhary
FaML
15
23
0
11 May 2022
A survey on datasets for fairness-aware machine learning
A survey on datasets for fairness-aware machine learning
Tai Le Quy
Arjun Roy
Vasileios Iosifidis
Wenbin Zhang
Eirini Ntoutsi
FaML
11
241
0
01 Oct 2021
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task
  Learning
Understanding and Improving Fairness-Accuracy Trade-offs in Multi-Task Learning
Yuyan Wang
Xuezhi Wang
Alex Beutel
Flavien Prost
Jilin Chen
Ed H. Chi
FaML
29
47
0
04 Jun 2021
Minimax Pareto Fairness: A Multi Objective Perspective
Minimax Pareto Fairness: A Multi Objective Perspective
Natalia Martínez
Martín Bertrán
Guillermo Sapiro
FaML
25
190
0
03 Nov 2020
Fair Meta-Learning For Few-Shot Classification
Fair Meta-Learning For Few-Shot Classification
Chengli Zhao
Changbin Li
Jincheng Li
Feng Chen
FaML
21
26
0
23 Sep 2020
A Comprehensive Evaluation of Multi-task Learning and Multi-task
  Pre-training on EHR Time-series Data
A Comprehensive Evaluation of Multi-task Learning and Multi-task Pre-training on EHR Time-series Data
Matthew B. A. McDermott
Bret A. Nestor
Evan Kim
Wancong Zhang
Anna Goldenberg
Peter Szolovits
Marzyeh Ghassemi Csail
AI4TS
22
15
0
20 Jul 2020
Review of Mathematical frameworks for Fairness in Machine Learning
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
15
39
0
26 May 2020
A Survey on Bias and Fairness in Machine Learning
A Survey on Bias and Fairness in Machine Learning
Ninareh Mehrabi
Fred Morstatter
N. Saxena
Kristina Lerman
Aram Galstyan
SyDa
FaML
352
4,237
0
23 Aug 2019
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary
  Classification
Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification
Evgenii Chzhen
Christophe Denis
Mohamed Hebiri
L. Oneto
Massimiliano Pontil
FaML
27
85
0
12 Jun 2019
Empirical Risk Minimization under Fairness Constraints
Empirical Risk Minimization under Fairness Constraints
Michele Donini
L. Oneto
Shai Ben-David
John Shawe-Taylor
Massimiliano Pontil
FaML
35
439
0
23 Feb 2018
Fair prediction with disparate impact: A study of bias in recidivism
  prediction instruments
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,092
0
24 Oct 2016
1