Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.08033
Cited By
Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality
18 October 2018
Taiji Suzuki
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adaptivity of deep ReLU network for learning in Besov and mixed smooth Besov spaces: optimal rate and curse of dimensionality"
50 / 53 papers shown
Title
Super-fast rates of convergence for Neural Networks Classifiers under the Hard Margin Condition
Nathanael Tepakbong
Ding-Xuan Zhou
Xiang Zhou
46
0
0
13 May 2025
Higher Order Approximation Rates for ReLU CNNs in Korobov Spaces
Yuwen Li
Guozhi Zhang
46
1
0
20 Jan 2025
On the optimal approximation of Sobolev and Besov functions using deep ReLU neural networks
Yunfei Yang
62
2
0
02 Sep 2024
Posterior and variational inference for deep neural networks with heavy-tailed weights
Ismael Castillo
Paul Egels
BDL
60
4
0
05 Jun 2024
Learning with Norm Constrained, Over-parameterized, Two-layer Neural Networks
Fanghui Liu
L. Dadi
V. Cevher
85
2
0
29 Apr 2024
Approximation Rates and VC-Dimension Bounds for (P)ReLU MLP Mixture of Experts
Anastasis Kratsios
Haitz Sáez de Ocáriz Borde
Takashi Furuya
Marc T. Law
MoE
41
1
0
05 Feb 2024
Generalization Error Guaranteed Auto-Encoder-Based Nonlinear Model Reduction for Operator Learning
Hao Liu
Biraj Dahal
Rongjie Lai
Wenjing Liao
AI4CE
34
5
0
19 Jan 2024
Nonlinear functional regression by functional deep neural network with kernel embedding
Zhongjie Shi
Jun Fan
Linhao Song
Ding-Xuan Zhou
Johan A. K. Suykens
65
5
0
05 Jan 2024
Neural Network Approximation for Pessimistic Offline Reinforcement Learning
Di Wu
Yuling Jiao
Li Shen
Haizhao Yang
Xiliang Lu
OffRL
29
1
0
19 Dec 2023
Statistical Spatially Inhomogeneous Diffusion Inference
Yinuo Ren
Yiping Lu
Lexing Ying
Grant M. Rotskoff
22
2
0
10 Dec 2023
Analysis of the expected
L
2
L_2
L
2
error of an over-parametrized deep neural network estimate learned by gradient descent without regularization
Selina Drews
Michael Kohler
38
3
0
24 Nov 2023
Statistical learning by sparse deep neural networks
Felix Abramovich
BDL
26
1
0
15 Nov 2023
Fitted Value Iteration Methods for Bicausal Optimal Transport
Erhan Bayraktar
Bingyan Han
OT
37
6
0
22 Jun 2023
Pairwise Ranking with Gaussian Kernels
Guanhang Lei
Lei Shi
32
2
0
06 Apr 2023
Deep Operator Learning Lessens the Curse of Dimensionality for PDEs
Ke Chen
Chunmei Wang
Haizhao Yang
AI4CE
24
13
0
28 Jan 2023
Exploring the Approximation Capabilities of Multiplicative Neural Networks for Smooth Functions
Ido Ben-Shaul
Tomer Galanti
S. Dekel
31
3
0
11 Jan 2023
Smooth Sailing: Improving Active Learning for Pre-trained Language Models with Representation Smoothness Analysis
Josip Jukić
Jan Snajder
16
5
0
20 Dec 2022
A Review of Off-Policy Evaluation in Reinforcement Learning
Masatoshi Uehara
C. Shi
Nathan Kallus
OffRL
36
69
0
13 Dec 2022
Analysis of the rate of convergence of an over-parametrized deep neural network estimate learned by gradient descent
Michael Kohler
A. Krzyżak
32
10
0
04 Oct 2022
Approximation results for Gradient Descent trained Shallow Neural Networks in
1
d
1d
1
d
R. Gentile
G. Welper
ODL
56
6
0
17 Sep 2022
On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent
Selina Drews
Michael Kohler
30
14
0
30 Aug 2022
Deep Neural Network Classifier for Multi-dimensional Functional Data
Shuoyang Wang
Guanqun Cao
Zuofeng Shang
34
12
0
17 May 2022
On the inability of Gaussian process regression to optimally learn compositional functions
M. Giordano
Kolyan Ray
Johannes Schmidt-Hieber
53
12
0
16 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
42
121
0
03 May 2022
Uncertainty Quantification for nonparametric regression using Empirical Bayesian neural networks
Stefan Franssen
Botond Szabó
BDL
UQCV
21
4
0
27 Apr 2022
Qualitative neural network approximation over R and C: Elementary proofs for analytic and polynomial activation
Josiah Park
Stephan Wojtowytsch
26
1
0
25 Mar 2022
How do noise tails impact on deep ReLU networks?
Jianqing Fan
Yihong Gu
Wen-Xin Zhou
ODL
41
13
0
20 Mar 2022
SLIDE: a surrogate fairness constraint to ensure fairness consistency
Kunwoong Kim
Ilsang Ohn
Sara Kim
Yongdai Kim
35
4
0
07 Feb 2022
Interplay between depth of neural networks and locality of target functions
Takashi Mori
Masakuni Ueda
25
0
0
28 Jan 2022
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
77
64
0
25 Jan 2022
Deep Nonparametric Estimation of Operators between Infinite Dimensional Spaces
Hao Liu
Haizhao Yang
Minshuo Chen
T. Zhao
Wenjing Liao
32
36
0
01 Jan 2022
Drift estimation for a multi-dimensional diffusion process using deep neural networks
Akihiro Oga
Yuta Koike
DiffM
21
5
0
26 Dec 2021
Deep Network Approximation in Terms of Intrinsic Parameters
Zuowei Shen
Haizhao Yang
Shijun Zhang
21
9
0
15 Nov 2021
Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks
Rahul Parhi
Robert D. Nowak
58
38
0
18 Sep 2021
Robust Nonparametric Regression with Deep Neural Networks
Guohao Shen
Yuling Jiao
Yuanyuan Lin
Jian Huang
OOD
33
13
0
21 Jul 2021
Theory of Deep Convolutional Neural Networks III: Approximating Radial Functions
Tong Mao
Zhongjie Shi
Ding-Xuan Zhou
16
33
0
02 Jul 2021
Rejoinder: On nearly assumption-free tests of nominal confidence interval coverage for causal parameters estimated by machine learning
Lin Liu
Rajarshi Mukherjee
J. M. Robins
CML
33
16
0
07 Aug 2020
Phase Transitions in Rate Distortion Theory and Deep Learning
Philipp Grohs
Andreas Klotz
F. Voigtlaender
14
7
0
03 Aug 2020
Approximation of Smoothness Classes by Deep Rectifier Networks
Mazen Ali
A. Nouy
17
9
0
30 Jul 2020
Expressivity of Deep Neural Networks
Ingo Gühring
Mones Raslan
Gitta Kutyniok
16
51
0
09 Jul 2020
Learning with tree tensor networks: complexity estimates and model selection
Bertrand Michel
A. Nouy
15
14
0
02 Jul 2020
When Does Preconditioning Help or Hurt Generalization?
S. Amari
Jimmy Ba
Roger C. Grosse
Xuechen Li
Atsushi Nitanda
Taiji Suzuki
Denny Wu
Ji Xu
36
32
0
18 Jun 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
34
14
0
25 May 2020
A Mean-field Analysis of Deep ResNet and Beyond: Towards Provable Optimization Via Overparameterization From Depth
Yiping Lu
Chao Ma
Yulong Lu
Jianfeng Lu
Lexing Ying
MLT
39
78
0
11 Mar 2020
Deep Network Approximation for Smooth Functions
Jianfeng Lu
Zuowei Shen
Haizhao Yang
Shijun Zhang
67
247
0
09 Jan 2020
Variational Physics-Informed Neural Networks For Solving Partial Differential Equations
E. Kharazmi
Z. Zhang
George Karniadakis
24
238
0
27 Nov 2019
The Local Elasticity of Neural Networks
Hangfeng He
Weijie J. Su
40
44
0
15 Oct 2019
Deep Network Approximation Characterized by Number of Neurons
Zuowei Shen
Haizhao Yang
Shijun Zhang
23
182
0
13 Jun 2019
Nonlinear Approximation via Compositions
Zuowei Shen
Haizhao Yang
Shijun Zhang
26
92
0
26 Feb 2019
Nonparametric Density Estimation & Convergence Rates for GANs under Besov IPM Losses
Ananya Uppal
Shashank Singh
Barnabás Póczós
30
52
0
09 Feb 2019
1
2
Next