Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.07770
Cited By
Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity
17 October 2018
Chulhee Yun
S. Sra
Ali Jadbabaie
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Small ReLU networks are powerful memorizers: a tight analysis of memorization capacity"
33 / 33 papers shown
Title
On the Complexity of Neural Computation in Superposition
Micah Adler
Nir Shavit
115
3
0
05 Sep 2024
Analytical Solution of a Three-layer Network with a Matrix Exponential Activation Function
Kuo Gai
Shihua Zhang
FAtt
43
0
0
02 Jul 2024
\emph{Lifted} RDT based capacity analysis of the 1-hidden layer treelike \emph{sign} perceptrons neural networks
M. Stojnic
24
1
0
13 Dec 2023
Capacity of the treelike sign perceptrons neural networks with one hidden layer -- RDT based upper bounds
M. Stojnic
21
4
0
13 Dec 2023
Minimum width for universal approximation using ReLU networks on compact domain
Namjun Kim
Chanho Min
Sejun Park
VLM
29
10
0
19 Sep 2023
Are Transformers with One Layer Self-Attention Using Low-Rank Weight Matrices Universal Approximators?
T. Kajitsuka
Issei Sato
31
16
0
26 Jul 2023
Memorization Capacity of Multi-Head Attention in Transformers
Sadegh Mahdavi
Renjie Liao
Christos Thrampoulidis
26
22
0
03 Jun 2023
Memorization Capacity of Neural Networks with Conditional Computation
Erdem Koyuncu
38
4
0
20 Mar 2023
Graph Positional Encoding via Random Feature Propagation
Moshe Eliasof
Fabrizio Frasca
Beatrice Bevilacqua
Eran Treister
Gal Chechik
Haggai Maron
32
18
0
06 Mar 2023
Task Discovery: Finding the Tasks that Neural Networks Generalize on
Andrei Atanov
Andrei Filatov
Teresa Yeo
Ajay Sohmshetty
Amir Zamir
OOD
45
10
0
01 Dec 2022
LU decomposition and Toeplitz decomposition of a neural network
Yucong Liu
Simiao Jiao
Lek-Heng Lim
30
7
0
25 Nov 2022
When Expressivity Meets Trainability: Fewer than
n
n
n
Neurons Can Work
Jiawei Zhang
Yushun Zhang
Mingyi Hong
Ruoyu Sun
Zhi-Quan Luo
26
10
0
21 Oct 2022
Why Robust Generalization in Deep Learning is Difficult: Perspective of Expressive Power
Binghui Li
Jikai Jin
Han Zhong
J. Hopcroft
Liwei Wang
OOD
82
27
0
27 May 2022
Randomly Initialized One-Layer Neural Networks Make Data Linearly Separable
Promit Ghosal
Srinath Mahankali
Yihang Sun
MLT
24
4
0
24 May 2022
Training Fully Connected Neural Networks is
∃
R
\exists\mathbb{R}
∃
R
-Complete
Daniel Bertschinger
Christoph Hertrich
Paul Jungeblut
Tillmann Miltzow
Simon Weber
OffRL
59
30
0
04 Apr 2022
Selective Network Linearization for Efficient Private Inference
Minsu Cho
Ameya Joshi
S. Garg
Brandon Reagen
C. Hegde
6
43
0
04 Feb 2022
Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer
Beatrice Acciaio
Anastasis Kratsios
G. Pammer
OOD
52
20
0
31 Jan 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
33
3
0
28 Jan 2022
Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?
M. Farrell
Blake Bordelon
Shubhendu Trivedi
C. Pehlevan
18
5
0
14 Oct 2021
Equivariant Subgraph Aggregation Networks
Beatrice Bevilacqua
Fabrizio Frasca
Derek Lim
Balasubramaniam Srinivasan
Chen Cai
G. Balamurugan
M. Bronstein
Haggai Maron
53
175
0
06 Oct 2021
A Universal Law of Robustness via Isoperimetry
Sébastien Bubeck
Mark Sellke
13
213
0
26 May 2021
A Convergence Theory Towards Practical Over-parameterized Deep Neural Networks
Asaf Noy
Yi Tian Xu
Y. Aflalo
Lihi Zelnik-Manor
R. L. Jin
33
3
0
12 Jan 2021
Tight Bounds on the Smallest Eigenvalue of the Neural Tangent Kernel for Deep ReLU Networks
Quynh N. Nguyen
Marco Mondelli
Guido Montúfar
25
81
0
21 Dec 2020
From Local Structures to Size Generalization in Graph Neural Networks
Gilad Yehudai
Ethan Fetaya
E. Meirom
Gal Chechik
Haggai Maron
GNN
AI4CE
169
123
0
17 Oct 2020
A law of robustness for two-layers neural networks
Sébastien Bubeck
Yuanzhi Li
Dheeraj M. Nagaraj
27
57
0
30 Sep 2020
The Interpolation Phase Transition in Neural Networks: Memorization and Generalization under Lazy Training
Andrea Montanari
Yiqiao Zhong
47
95
0
25 Jul 2020
Minimum Width for Universal Approximation
Sejun Park
Chulhee Yun
Jaeho Lee
Jinwoo Shin
33
121
0
16 Jun 2020
Approximation in shift-invariant spaces with deep ReLU neural networks
Yunfei Yang
Zhen Li
Yang Wang
34
14
0
25 May 2020
Memory capacity of neural networks with threshold and ReLU activations
Roman Vershynin
31
21
0
20 Jan 2020
Universal Approximation with Deep Narrow Networks
Patrick Kidger
Terry Lyons
31
324
0
21 May 2019
NEU: A Meta-Algorithm for Universal UAP-Invariant Feature Representation
Anastasis Kratsios
Cody B. Hyndman
OOD
25
17
0
31 Aug 2018
Global optimality conditions for deep neural networks
Chulhee Yun
S. Sra
Ali Jadbabaie
128
117
0
08 Jul 2017
Benefits of depth in neural networks
Matus Telgarsky
148
602
0
14 Feb 2016
1