Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.07538
Cited By
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences
17 October 2018
Nikolas Hesse
S. Pujades
Michael J. Black
Michael Arens
U. Hofmann
A. Schroeder
3DH
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences"
7 / 7 papers shown
Title
Markerless human pose estimation for biomedical applications: a survey
Andrea Avogaro
Federico Cunico
Bodo Rosenhahn
Francesco Setti
3DH
35
14
0
01 Aug 2023
Human Digital Twin: A Survey
Yujia Lin
L. Chen
Aftab Ali
C. Nugent
I. Cleland
Rongyang Li
D. Gao
Hang Wang
Yajie Wang
Huansheng Ning
35
27
0
12 Dec 2022
Automatic Assessment of Infant Face and Upper-Body Symmetry as Early Signs of Torticollis
Michael Wan
Xiaofei Huang
Bethany Tunik
Sarah Ostadabbas
CVBM
27
3
0
26 Oct 2022
Infant movement classification through pressure distribution analysis
Tomas Kulvicius
Dajie Zhang
K. Nielsen‐Saines
Sven Bolte
M. Kraft
Christa Einspieler
Luise Poustka
F. Worgotter
Peter B Marschik
15
9
0
26 Jul 2022
imGHUM: Implicit Generative Models of 3D Human Shape and Articulated Pose
Thiemo Alldieck
Hongyi Xu
C. Sminchisescu
3DH
43
116
0
24 Aug 2021
Disentangled Human Body Embedding Based on Deep Hierarchical Neural Network
Boyi Jiang
Juyong Zhang
Jianfei Cai
Jianmin Zheng
3DH
AI4CE
25
37
0
14 May 2019
DoubleFusion: Real-time Capture of Human Performances with Inner Body Shapes from a Single Depth Sensor
Tao Yu
Zerong Zheng
Kaiwen Guo
Jianhui Zhao
Qionghai Dai
Hao Li
Gerard Pons-Moll
Yebin Liu
3DH
138
271
0
17 Apr 2018
1