Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.07225
Cited By
Integrating kinematics and environment context into deep inverse reinforcement learning for predicting off-road vehicle trajectories
16 October 2018
Yanfu Zhang
Wenshan Wang
Rogerio Bonatti
Daniel Maturana
Sebastian Scherer
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Integrating kinematics and environment context into deep inverse reinforcement learning for predicting off-road vehicle trajectories"
9 / 9 papers shown
Title
Energy-based Legged Robots Terrain Traversability Modeling via Deep Inverse Reinforcement Learning
Lu Gan
J. Grizzle
Ryan Eustice
Maani Ghaffari
32
28
0
07 Jul 2022
An efficient Deep Spatio-Temporal Context Aware decision Network (DST-CAN) for Predictive Manoeuvre Planning
Jayabrata Chowdhury
Suresh Sundaram
Nishanth Rao
N. Sundararajan
23
2
0
20 May 2022
Spatiotemporal Costmap Inference for MPC via Deep Inverse Reinforcement Learning
Keuntaek Lee
David Isele
Evangelos A. Theodorou
S. Bae
34
24
0
17 Jan 2022
AGPNet -- Autonomous Grading Policy Network
Chana Ross
Yakov Miron
Yuval Goldfracht
Dotan Di Castro
50
3
0
20 Dec 2021
Trajectory Prediction in Autonomous Driving with a Lane Heading Auxiliary Loss
Ross Greer
Nachiket Deo
Mohan M. Trivedi
35
46
0
12 Nov 2020
Trajectory Planning for Autonomous Vehicles Using Hierarchical Reinforcement Learning
Kaleb Ben Naveed
Zhiqian Qiao
John M. Dolan
17
55
0
09 Nov 2020
Trajectory Forecasts in Unknown Environments Conditioned on Grid-Based Plans
Nachiket Deo
Mohan M. Trivedi
24
150
0
03 Jan 2020
Off-road Autonomous Vehicles Traversability Analysis and Trajectory Planning Based on Deep Inverse Reinforcement Learning
Zeyu Zhu
Nan Li
Ruoyu Sun
Huijing Zhao
Donghao Xu
29
32
0
16 Sep 2019
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation
Adam Paszke
Abhishek Chaurasia
Sangpil Kim
Eugenio Culurciello
SSeg
235
2,059
0
07 Jun 2016
1