Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.05665
Cited By
v1
v2 (latest)
Is PGD-Adversarial Training Necessary? Alternative Training via a Soft-Quantization Network with Noisy-Natural Samples Only
10 October 2018
T. Zheng
Changyou Chen
K. Ren
AAML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Is PGD-Adversarial Training Necessary? Alternative Training via a Soft-Quantization Network with Noisy-Natural Samples Only"
17 / 17 papers shown
Title
Distributionally Adversarial Attack
T. Zheng
Changyou Chen
K. Ren
OOD
95
121
0
16 Aug 2018
Defend Deep Neural Networks Against Adversarial Examples via Fixed and Dynamic Quantized Activation Functions
Adnan Siraj Rakin
Jinfeng Yi
Boqing Gong
Deliang Fan
AAML
MQ
69
50
0
18 Jul 2018
Defense-GAN: Protecting Classifiers Against Adversarial Attacks Using Generative Models
Pouya Samangouei
Maya Kabkab
Rama Chellappa
AAML
GAN
86
1,179
0
17 May 2018
Curriculum Adversarial Training
Qi-Zhi Cai
Min Du
Chang-rui Liu
Basel Alomair
AAML
80
165
0
13 May 2018
Adversarial Logit Pairing
Harini Kannan
Alexey Kurakin
Ian Goodfellow
AAML
98
629
0
16 Mar 2018
Stochastic Activation Pruning for Robust Adversarial Defense
Guneet Singh Dhillon
Kamyar Azizzadenesheli
Zachary Chase Lipton
Jeremy Bernstein
Jean Kossaifi
Aran Khanna
Anima Anandkumar
AAML
84
547
0
05 Mar 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
249
3,194
0
01 Feb 2018
Characterizing Adversarial Subspaces Using Local Intrinsic Dimensionality
Xingjun Ma
Yue Liu
Yisen Wang
S. Erfani
S. Wijewickrema
Grant Schoenebeck
Basel Alomair
Michael E. Houle
James Bailey
AAML
116
742
0
08 Jan 2018
Mitigating Adversarial Effects Through Randomization
Cihang Xie
Jianyu Wang
Zhishuai Zhang
Zhou Ren
Alan Yuille
AAML
122
1,062
0
06 Nov 2017
Countering Adversarial Images using Input Transformations
Chuan Guo
Mayank Rana
Moustapha Cissé
Laurens van der Maaten
AAML
135
1,406
0
31 Oct 2017
Evasion Attacks against Machine Learning at Test Time
Battista Biggio
Igino Corona
Davide Maiorca
B. Nelson
Nedim Srndic
Pavel Laskov
Giorgio Giacinto
Fabio Roli
AAML
163
2,160
0
21 Aug 2017
Towards Deep Learning Models Resistant to Adversarial Attacks
Aleksander Madry
Aleksandar Makelov
Ludwig Schmidt
Dimitris Tsipras
Adrian Vladu
SILM
OOD
319
12,151
0
19 Jun 2017
Adversarial Example Defenses: Ensembles of Weak Defenses are not Strong
Warren He
James Wei
Xinyun Chen
Nicholas Carlini
Basel Alomair
AAML
102
242
0
15 Jun 2017
Ensemble Adversarial Training: Attacks and Defenses
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
177
2,729
0
19 May 2017
Feature Squeezing: Detecting Adversarial Examples in Deep Neural Networks
Weilin Xu
David Evans
Yanjun Qi
AAML
97
1,273
0
04 Apr 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
477
3,148
0
04 Nov 2016
Practical Black-Box Attacks against Machine Learning
Nicolas Papernot
Patrick McDaniel
Ian Goodfellow
S. Jha
Z. Berkay Celik
A. Swami
MLAU
AAML
85
3,685
0
08 Feb 2016
1