ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.05440
  4. Cited By
An algebraic-geometric approach for linear regression without
  correspondences
v1v2 (latest)

An algebraic-geometric approach for linear regression without correspondences

12 October 2018
M. Tsakiris
Liangzu Peng
A. Conca
L. Kneip
Yuanming Shi
Hayoung Choi
ArXiv (abs)PDFHTML

Papers citing "An algebraic-geometric approach for linear regression without correspondences"

9 / 9 papers shown
Title
Stochastic EM for Shuffled Linear Regression
Stochastic EM for Shuffled Linear Regression
Abubakar Abid
James Zou
28
17
0
02 Apr 2018
An Overview of Robust Subspace Recovery
An Overview of Robust Subspace Recovery
Gilad Lerman
Tyler Maunu
67
131
0
02 Mar 2018
Linear regression without correspondence
Linear regression without correspondence
Daniel J. Hsu
K. Shi
Xiaorui Sun
82
82
0
19 May 2017
Linear Regression with Shuffled Labels
Linear Regression with Shuffled Labels
Abubakar Abid
Ada Poon
James Zou
124
66
0
03 May 2017
Denoising Linear Models with Permuted Data
Denoising Linear Models with Permuted Data
A. Pananjady
Martin J. Wainwright
T. Courtade
105
73
0
24 Apr 2017
Dual Principal Component Pursuit
Dual Principal Component Pursuit
M. Tsakiris
René Vidal
77
98
0
15 Oct 2015
Algebraic Clustering of Affine Subspaces
Algebraic Clustering of Affine Subspaces
M. Tsakiris
René Vidal
51
44
0
22 Sep 2015
Filtrated Algebraic Subspace Clustering
Filtrated Algebraic Subspace Clustering
M. Tsakiris
René Vidal
51
25
0
20 Jun 2015
Sampling and Reconstruction of Spatial Fields using Mobile Sensors
Sampling and Reconstruction of Spatial Fields using Mobile Sensors
Jayakrishnan Unnikrishnan
M. Vetterli
36
60
0
01 Nov 2012
1