ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.04449
  4. Cited By
Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale

Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale

10 October 2018
Changye Wu
Julien Stoehr
Christian P. Robert
ArXivPDFHTML

Papers citing "Faster Hamiltonian Monte Carlo by Learning Leapfrog Scale"

5 / 5 papers shown
Title
A Direct Importance Sampling-based Framework for Rare Event Uncertainty
  Quantification in Non-Gaussian Spaces
A Direct Importance Sampling-based Framework for Rare Event Uncertainty Quantification in Non-Gaussian Spaces
Elsayed M. Eshra
Konstantinos G. Papakonstantinou
Hamed Nikbakht
23
0
0
23 May 2024
The Apogee to Apogee Path Sampler
The Apogee to Apogee Path Sampler
Chris Sherlock
S. Urbas
Matthew Ludkin
19
6
0
15 Dec 2021
Focusing on Difficult Directions for Learning HMC Trajectory Lengths
Focusing on Difficult Directions for Learning HMC Trajectory Lengths
Pavel Sountsov
Matt Hoffman
10
9
0
22 Oct 2021
Delayed rejection Hamiltonian Monte Carlo for sampling multiscale
  distributions
Delayed rejection Hamiltonian Monte Carlo for sampling multiscale distributions
Chirag Modi
A. Barnett
Bob Carpenter
33
14
0
01 Oct 2021
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
176
3,260
0
09 Jun 2012
1