Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.04066
Cited By
Deep learning with differential Gaussian process flows
9 October 2018
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep learning with differential Gaussian process flows"
10 / 10 papers shown
Title
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
Approximate Latent Force Model Inference
Jacob Moss
Felix L. Opolka
Bianca Dumitrascu
Pietro Lio
49
3
0
24 Sep 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
Learning Continuous-Time Dynamics by Stochastic Differential Networks
Yingru Liu
Yucheng Xing
Xuewen Yang
Xin Wang
Jing Shi
Di Jin
Zhaoyue Chen
BDL
26
6
0
11 Jun 2020
All your loss are belong to Bayes
Christian J. Walder
Richard Nock
16
5
0
08 Jun 2020
Scalable Gradients for Stochastic Differential Equations
Xuechen Li
Ting-Kam Leonard Wong
Ricky T. Q. Chen
David Duvenaud
17
310
0
05 Jan 2020
Bayesian Learning-Based Adaptive Control for Safety Critical Systems
David D. Fan
Jennifer Nguyen
Rohan Thakker
Nikhilesh Alatur
Ali-akbar Agha-mohammadi
Evangelos A. Theodorou
BDL
34
84
0
05 Oct 2019
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
27
27
0
04 Apr 2018
1