ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.04066
  4. Cited By
Deep learning with differential Gaussian process flows

Deep learning with differential Gaussian process flows

9 October 2018
Pashupati Hegde
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
    BDL
ArXivPDFHTML

Papers citing "Deep learning with differential Gaussian process flows"

10 / 10 papers shown
Title
Constructing Neural Network-Based Models for Simulating Dynamical
  Systems
Constructing Neural Network-Based Models for Simulating Dynamical Systems
Christian Møldrup Legaard
Thomas Schranz
G. Schweiger
Ján Drgovna
Basak Falay
C. Gomes
Alexandros Iosifidis
M. Abkar
P. Larsen
PINN
AI4CE
33
93
0
02 Nov 2021
Approximate Latent Force Model Inference
Approximate Latent Force Model Inference
Jacob Moss
Felix L. Opolka
Bianca Dumitrascu
Pietro Lio
49
3
0
24 Sep 2021
Infinitely Deep Bayesian Neural Networks with Stochastic Differential
  Equations
Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations
Winnie Xu
Ricky T. Q. Chen
Xuechen Li
David Duvenaud
BDL
UQCV
27
46
0
12 Feb 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
18
58
0
08 Nov 2020
Probabilistic Numeric Convolutional Neural Networks
Probabilistic Numeric Convolutional Neural Networks
Marc Finzi
Roberto Bondesan
Max Welling
BDL
AI4TS
29
13
0
21 Oct 2020
Learning Continuous-Time Dynamics by Stochastic Differential Networks
Learning Continuous-Time Dynamics by Stochastic Differential Networks
Yingru Liu
Yucheng Xing
Xuewen Yang
Xin Wang
Jing Shi
Di Jin
Zhaoyue Chen
BDL
26
6
0
11 Jun 2020
All your loss are belong to Bayes
All your loss are belong to Bayes
Christian J. Walder
Richard Nock
16
5
0
08 Jun 2020
Scalable Gradients for Stochastic Differential Equations
Scalable Gradients for Stochastic Differential Equations
Xuechen Li
Ting-Kam Leonard Wong
Ricky T. Q. Chen
David Duvenaud
17
310
0
05 Jan 2020
Bayesian Learning-Based Adaptive Control for Safety Critical Systems
Bayesian Learning-Based Adaptive Control for Safety Critical Systems
David D. Fan
Jennifer Nguyen
Rohan Thakker
Nikhilesh Alatur
Ali-akbar Agha-mohammadi
Evangelos A. Theodorou
BDL
34
84
0
05 Oct 2019
Posterior Inference for Sparse Hierarchical Non-stationary Models
Posterior Inference for Sparse Hierarchical Non-stationary Models
K. Monterrubio-Gómez
L. Roininen
S. Wade
Theo Damoulas
Mark Girolami
27
27
0
04 Apr 2018
1