Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.03292
Cited By
Sanity Checks for Saliency Maps
8 October 2018
Julius Adebayo
Justin Gilmer
M. Muelly
Ian Goodfellow
Moritz Hardt
Been Kim
FAtt
AAML
XAI
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sanity Checks for Saliency Maps"
50 / 357 papers shown
Title
Sanity Simulations for Saliency Methods
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
FAtt
38
17
0
13 May 2021
Leveraging Sparse Linear Layers for Debuggable Deep Networks
Eric Wong
Shibani Santurkar
A. Madry
FAtt
22
88
0
11 May 2021
Do Feature Attribution Methods Correctly Attribute Features?
Yilun Zhou
Serena Booth
Marco Tulio Ribeiro
J. Shah
FAtt
XAI
33
132
0
27 Apr 2021
Exploiting Explanations for Model Inversion Attacks
Xu Zhao
Wencan Zhang
Xiao Xiao
Brian Y. Lim
MIACV
21
82
0
26 Apr 2021
Towards Rigorous Interpretations: a Formalisation of Feature Attribution
Darius Afchar
Romain Hennequin
Vincent Guigue
FAtt
31
20
0
26 Apr 2021
EXplainable Neural-Symbolic Learning (X-NeSyL) methodology to fuse deep learning representations with expert knowledge graphs: the MonuMAI cultural heritage use case
Natalia Díaz Rodríguez
Alberto Lamas
Jules Sanchez
Gianni Franchi
Ivan Donadello
S. Tabik
David Filliat
P. Cruz
Rosana Montes
Francisco Herrera
49
77
0
24 Apr 2021
Towards a Collective Agenda on AI for Earth Science Data Analysis
D. Tuia
R. Roscher
Jan Dirk Wegner
Nathan Jacobs
Xiaoxiang Zhu
Gustau Camps-Valls
AI4CE
39
68
0
11 Apr 2021
Deep Interpretable Models of Theory of Mind
Ini Oguntola
Dana Hughes
Katia P. Sycara
HAI
33
23
0
07 Apr 2021
White Box Methods for Explanations of Convolutional Neural Networks in Image Classification Tasks
Meghna P. Ayyar
J. Benois-Pineau
A. Zemmari
FAtt
9
17
0
06 Apr 2021
Evaluating explainable artificial intelligence methods for multi-label deep learning classification tasks in remote sensing
Ioannis Kakogeorgiou
Konstantinos Karantzalos
XAI
23
118
0
03 Apr 2021
Model Selection's Disparate Impact in Real-World Deep Learning Applications
Jessica Zosa Forde
A. Feder Cooper
Kweku Kwegyir-Aggrey
Chris De Sa
Michael Littman
11
22
0
01 Apr 2021
Explaining COVID-19 and Thoracic Pathology Model Predictions by Identifying Informative Input Features
Ashkan Khakzar
Yang Zhang
W. Mansour
Yuezhi Cai
Yawei Li
Yucheng Zhang
Seong Tae Kim
Nassir Navab
FAtt
44
17
0
01 Apr 2021
Group-CAM: Group Score-Weighted Visual Explanations for Deep Convolutional Networks
Qing-Long Zhang
Lu Rao
Yubin Yang
16
58
0
25 Mar 2021
IAIA-BL: A Case-based Interpretable Deep Learning Model for Classification of Mass Lesions in Digital Mammography
A. Barnett
F. Schwartz
Chaofan Tao
Chaofan Chen
Yinhao Ren
J. Lo
Cynthia Rudin
31
133
0
23 Mar 2021
Robust Models Are More Interpretable Because Attributions Look Normal
Zifan Wang
Matt Fredrikson
Anupam Datta
OOD
FAtt
35
25
0
20 Mar 2021
Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges
Cynthia Rudin
Chaofan Chen
Zhi Chen
Haiyang Huang
Lesia Semenova
Chudi Zhong
FaML
AI4CE
LRM
59
653
0
20 Mar 2021
Beyond Trivial Counterfactual Explanations with Diverse Valuable Explanations
Pau Rodríguez López
Massimo Caccia
Alexandre Lacoste
L. Zamparo
I. Laradji
Laurent Charlin
David Vazquez
AAML
37
55
0
18 Mar 2021
Neural Network Attribution Methods for Problems in Geoscience: A Novel Synthetic Benchmark Dataset
Antonios Mamalakis
I. Ebert‐Uphoff
E. Barnes
OOD
28
75
0
18 Mar 2021
Interpretable Machine Learning: Moving From Mythos to Diagnostics
Valerie Chen
Jeffrey Li
Joon Sik Kim
Gregory Plumb
Ameet Talwalkar
32
29
0
10 Mar 2021
Detecting Spurious Correlations with Sanity Tests for Artificial Intelligence Guided Radiology Systems
U. Mahmood
Robik Shrestha
D. Bates
L. Mannelli
G. Corrias
Y. Erdi
Christopher Kanan
16
16
0
04 Mar 2021
Have We Learned to Explain?: How Interpretability Methods Can Learn to Encode Predictions in their Interpretations
N. Jethani
Mukund Sudarshan
Yindalon Aphinyanagphongs
Rajesh Ranganath
FAtt
82
70
0
02 Mar 2021
Do Input Gradients Highlight Discriminative Features?
Harshay Shah
Prateek Jain
Praneeth Netrapalli
AAML
FAtt
21
57
0
25 Feb 2021
Gifsplanation via Latent Shift: A Simple Autoencoder Approach to Counterfactual Generation for Chest X-rays
Joseph Paul Cohen
Rupert Brooks
Sovann En
Evan Zucker
Anuj Pareek
M. Lungren
Akshay S. Chaudhari
FAtt
MedIm
37
4
0
18 Feb 2021
Connecting Interpretability and Robustness in Decision Trees through Separation
Michal Moshkovitz
Yao-Yuan Yang
Kamalika Chaudhuri
30
22
0
14 Feb 2021
Convolutional Neural Network Interpretability with General Pattern Theory
Erico Tjoa
Cuntai Guan
FAtt
AI4CE
16
6
0
05 Feb 2021
Explainability of deep vision-based autonomous driving systems: Review and challenges
Éloi Zablocki
H. Ben-younes
P. Pérez
Matthieu Cord
XAI
37
169
0
13 Jan 2021
Robust Machine Learning Systems: Challenges, Current Trends, Perspectives, and the Road Ahead
Muhammad Shafique
Mahum Naseer
T. Theocharides
C. Kyrkou
O. Mutlu
Lois Orosa
Jungwook Choi
OOD
78
100
0
04 Jan 2021
On Baselines for Local Feature Attributions
Johannes Haug
Stefan Zurn
Peter El-Jiz
Gjergji Kasneci
FAtt
13
31
0
04 Jan 2021
iGOS++: Integrated Gradient Optimized Saliency by Bilateral Perturbations
Saeed Khorram
T. Lawson
Fuxin Li
AAML
FAtt
11
26
0
31 Dec 2020
Towards Robust Explanations for Deep Neural Networks
Ann-Kathrin Dombrowski
Christopher J. Anders
K. Müller
Pan Kessel
FAtt
21
63
0
18 Dec 2020
Improving 3D convolutional neural network comprehensibility via interactive visualization of relevance maps: Evaluation in Alzheimer's disease
M. Dyrba
Moritz Hanzig
S. Altenstein
Sebastian Bader
Tommaso Ballarini
...
B. Ertl-Wagner
M. Wagner
J. Wiltfang
F. Jessen
S. Teipel
FAtt
MedIm
34
51
0
18 Dec 2020
Understanding Learned Reward Functions
Eric J. Michaud
Adam Gleave
Stuart J. Russell
XAI
OffRL
22
33
0
10 Dec 2020
Debiased-CAM to mitigate image perturbations with faithful visual explanations of machine learning
Wencan Zhang
Mariella Dimiccoli
Brian Y. Lim
FAtt
24
18
0
10 Dec 2020
Understanding Failures of Deep Networks via Robust Feature Extraction
Sahil Singla
Besmira Nushi
S. Shah
Ece Kamar
Eric Horvitz
FAtt
28
83
0
03 Dec 2020
Interpretable Graph Capsule Networks for Object Recognition
Jindong Gu
Volker Tresp
FAtt
19
36
0
03 Dec 2020
ProtoPShare: Prototype Sharing for Interpretable Image Classification and Similarity Discovery
Dawid Rymarczyk
Lukasz Struski
Jacek Tabor
Bartosz Zieliñski
19
111
0
29 Nov 2020
Reflective-Net: Learning from Explanations
Johannes Schneider
Michalis Vlachos
FAtt
OffRL
LRM
57
18
0
27 Nov 2020
Explaining by Removing: A Unified Framework for Model Explanation
Ian Covert
Scott M. Lundberg
Su-In Lee
FAtt
36
241
0
21 Nov 2020
Robust and Stable Black Box Explanations
Himabindu Lakkaraju
Nino Arsov
Osbert Bastani
AAML
FAtt
24
84
0
12 Nov 2020
Quantifying Learnability and Describability of Visual Concepts Emerging in Representation Learning
Iro Laina
Ruth C. Fong
Andrea Vedaldi
OCL
33
13
0
27 Oct 2020
Now You See Me (CME): Concept-based Model Extraction
Dmitry Kazhdan
B. Dimanov
M. Jamnik
Pietro Lió
Adrian Weller
17
72
0
25 Oct 2020
Exemplary Natural Images Explain CNN Activations Better than State-of-the-Art Feature Visualization
Judy Borowski
Roland S. Zimmermann
Judith Schepers
Robert Geirhos
Thomas S. A. Wallis
Matthias Bethge
Wieland Brendel
FAtt
39
7
0
23 Oct 2020
A Survey on Deep Learning and Explainability for Automatic Report Generation from Medical Images
Pablo Messina
Pablo Pino
Denis Parra
Alvaro Soto
Cecilia Besa
S. Uribe
Marcelo andía
C. Tejos
Claudia Prieto
Daniel Capurro
MedIm
36
62
0
20 Oct 2020
Interpretable Machine Learning -- A Brief History, State-of-the-Art and Challenges
Christoph Molnar
Giuseppe Casalicchio
B. Bischl
AI4TS
AI4CE
20
397
0
19 Oct 2020
Learning Propagation Rules for Attribution Map Generation
Yiding Yang
Jiayan Qiu
Xiuming Zhang
Dacheng Tao
Xinchao Wang
FAtt
38
17
0
14 Oct 2020
Visualizing Color-wise Saliency of Black-Box Image Classification Models
Yuhki Hatakeyama
Hiroki Sakuma
Yoshinori Konishi
Kohei Suenaga
FAtt
19
3
0
06 Oct 2020
Remembering for the Right Reasons: Explanations Reduce Catastrophic Forgetting
Sayna Ebrahimi
Suzanne Petryk
Akash Gokul
William Gan
Joseph E. Gonzalez
Marcus Rohrbach
Trevor Darrell
CLL
37
45
0
04 Oct 2020
Explaining Deep Neural Networks
Oana-Maria Camburu
XAI
FAtt
28
26
0
04 Oct 2020
Trustworthy Convolutional Neural Networks: A Gradient Penalized-based Approach
Nicholas F Halliwell
Freddy Lecue
FAtt
22
9
0
29 Sep 2020
Instance-based Counterfactual Explanations for Time Series Classification
Eoin Delaney
Derek Greene
Mark T. Keane
CML
AI4TS
19
89
0
28 Sep 2020
Previous
1
2
3
4
5
6
7
8
Next