Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.03035
Cited By
Characterizing Deep-Learning I/O Workloads in TensorFlow
6 October 2018
Steven W. D. Chien
Stefano Markidis
C. Sishtla
Luís Santos
Pawel Herman
Sai B. Narasimhamurthy
Erwin Laure
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing Deep-Learning I/O Workloads in TensorFlow"
10 / 10 papers shown
Title
High fusion computers: The IoTs, edges, data centers, and humans-in-the-loop as a computer
Wanling Gao
Lei Wang
Mingyu Chen
Jin Xiong
Chunjie Luo
...
Shaopeng Dai
Qian He
Hainan Ye
Yungang Bao
Jianfeng Zhan
11
1
0
18 Nov 2022
Where Is My Training Bottleneck? Hidden Trade-Offs in Deep Learning Preprocessing Pipelines
Alexander Isenko
R. Mayer
Jeffrey Jedele
Hans-Arno Jacobsen
19
23
0
17 Feb 2022
A Deep Learning-Based Particle-in-Cell Method for Plasma Simulations
Xavier Aguilar
Stefano Markidis
18
17
0
05 Jul 2021
Clairvoyant Prefetching for Distributed Machine Learning I/O
Nikoli Dryden
Roman Böhringer
Tal Ben-Nun
Torsten Hoefler
31
55
0
21 Jan 2021
tf-Darshan: Understanding Fine-grained I/O Performance in Machine Learning Workloads
Steven W. D. Chien
Artur Podobas
Ivy Bo Peng
Stefano Markidis
16
11
0
10 Aug 2020
The Case for Strong Scaling in Deep Learning: Training Large 3D CNNs with Hybrid Parallelism
Yosuke Oyama
N. Maruyama
Nikoli Dryden
Erin McCarthy
P. Harrington
J. Balewski
Satoshi Matsuoka
Peter Nugent
B. Van Essen
3DV
AI4CE
32
37
0
25 Jul 2020
High Performance I/O For Large Scale Deep Learning
A. Aizman
Gavin Maltby
Thomas Breuel
17
33
0
07 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Characterizing Deep Learning Training Workloads on Alibaba-PAI
Mengdi Wang
Chen Meng
Guoping Long
Chuan Wu
Jun Yang
Wei Lin
Yangqing Jia
22
53
0
14 Oct 2019
Faster Neural Network Training with Data Echoing
Dami Choi
Alexandre Passos
Christopher J. Shallue
George E. Dahl
23
48
0
12 Jul 2019
1