Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02894
Cited By
Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding
5 October 2018
Nathan Kallus
Xiaojie Mao
Angela Zhou
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Interval Estimation of Individual-Level Causal Effects Under Unobserved Confounding"
22 / 22 papers shown
Title
Quantifying Aleatoric Uncertainty of the Treatment Effect: A Novel Orthogonal Learner
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
54
2
0
05 Nov 2024
Stabilized Neural Prediction of Potential Outcomes in Continuous Time
Konstantin Hess
Stefan Feuerriegel
48
0
0
04 Oct 2024
Conformal Counterfactual Inference under Hidden Confounding
Zonghao Chen
Ruocheng Guo
Jean-François Ton
Yang Liu
CML
OffRL
47
2
0
20 May 2024
A Neural Framework for Generalized Causal Sensitivity Analysis
Dennis Frauen
F. Imrie
Alicia Curth
Valentyn Melnychuk
Stefan Feuerriegel
M. Schaar
CML
31
10
0
27 Nov 2023
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
32
9
0
19 Nov 2023
Delphic Offline Reinforcement Learning under Nonidentifiable Hidden Confounding
Alizée Pace
Hugo Yèche
Bernhard Schölkopf
Gunnar Rätsch
Guy Tennenholtz
OffRL
16
6
0
01 Jun 2023
Diagnosing Model Performance Under Distribution Shift
Tiffany Cai
Hongseok Namkoong
Steve Yadlowsky
37
27
0
03 Mar 2023
Robust Design and Evaluation of Predictive Algorithms under Unobserved Confounding
Ashesh Rambachan
Amanda Coston
Edward H. Kennedy
11
4
0
19 Dec 2022
Sensitivity Analysis for Marginal Structural Models
Matteo Bonvini
Edward H. Kennedy
V. Ventura
Larry A. Wasserman
CML
22
13
0
10 Oct 2022
What's the Harm? Sharp Bounds on the Fraction Negatively Affected by Treatment
Nathan Kallus
29
21
0
20 May 2022
Scalable Sensitivity and Uncertainty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
Andrew Jesson
A. Douglas
P. Manshausen
Maelys Solal
N. Meinshausen
P. Stier
Y. Gal
Uri Shalit
CML
18
26
0
21 Apr 2022
Model-Free and Model-Based Policy Evaluation when Causality is Uncertain
David Bruns-Smith
CML
ELM
OffRL
24
12
0
02 Apr 2022
Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
Tobias Hatt
Jeroen Berrevoets
Alicia Curth
Stefan Feuerriegel
M. Schaar
CML
52
29
0
25 Feb 2022
Long Story Short: Omitted Variable Bias in Causal Machine Learning
Victor Chernozhukov
Carlos Cinelli
Whitney Newey
Amit Sharma
Vasilis Syrgkanis
CML
18
35
0
26 Dec 2021
Towards Principled Causal Effect Estimation by Deep Identifiable Models
Pengzhou (Abel) Wu
Kenji Fukumizu
BDL
OOD
CML
27
3
0
30 Sep 2021
Estimating and Improving Dynamic Treatment Regimes With a Time-Varying Instrumental Variable
Shuxiao Chen
B. Zhang
24
19
0
15 Apr 2021
Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding
Andrew Jesson
Sören Mindermann
Y. Gal
Uri Shalit
CML
13
53
0
08 Mar 2021
Instrumental Variable Value Iteration for Causal Offline Reinforcement Learning
Luofeng Liao
Zuyue Fu
Zhuoran Yang
Yixin Wang
Mladen Kolar
Zhaoran Wang
OffRL
18
34
0
19 Feb 2021
High-Dimensional Feature Selection for Sample Efficient Treatment Effect Estimation
Kristjan Greenewald
Dmitriy A. Katz-Rogozhnikov
Karthikeyan Shanmugam
CML
39
9
0
03 Nov 2020
Off-policy Policy Evaluation For Sequential Decisions Under Unobserved Confounding
Hongseok Namkoong
Ramtin Keramati
Steve Yadlowsky
Emma Brunskill
OffRL
6
63
0
12 Mar 2020
Confounding-Robust Policy Evaluation in Infinite-Horizon Reinforcement Learning
Nathan Kallus
Angela Zhou
OffRL
33
58
0
11 Feb 2020
Assessing Algorithmic Fairness with Unobserved Protected Class Using Data Combination
Nathan Kallus
Xiaojie Mao
Angela Zhou
FaML
24
155
0
01 Jun 2019
1