ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.02183
  4. Cited By
Revealing Network Structure, Confidentially: Improved Rates for
  Node-Private Graphon Estimation

Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation

4 October 2018
C. Borgs
J. Chayes
Adam D. Smith
Ilias Zadik
    FedML
ArXivPDFHTML

Papers citing "Revealing Network Structure, Confidentially: Improved Rates for Node-Private Graphon Estimation"

12 / 12 papers shown
Title
Low degree conjecture implies sharp computational thresholds in stochastic block model
Low degree conjecture implies sharp computational thresholds in stochastic block model
Jingqiu Ding
Yiding Hua
Lucas Slot
David Steurer
77
1
0
20 Feb 2025
Fully Dynamic Graph Algorithms with Edge Differential Privacy
Fully Dynamic Graph Algorithms with Edge Differential Privacy
Sofya Raskhodnikova
Teresa Anna Steiner
38
1
0
26 Sep 2024
Time-Aware Projections: Truly Node-Private Graph Statistics under
  Continual Observation
Time-Aware Projections: Truly Node-Private Graph Statistics under Continual Observation
Palak Jain
Adam D. Smith
Connor Wagaman
29
5
0
07 Mar 2024
Node-Differentially Private Estimation of the Number of Connected
  Components
Node-Differentially Private Estimation of the Number of Connected Components
Iden Kalemaj
Sofya Raskhodnikova
Adam D. Smith
Charalampos E. Tsourakakis
29
7
0
12 Apr 2023
Private estimation algorithms for stochastic block models and mixture
  models
Private estimation algorithms for stochastic block models and mixture models
Hongjie Chen
Vincent Cohen-Addad
Tommaso dÓrsi
Alessandro Epasto
Jacob Imola
David Steurer
Stefan Tiegel
FedML
43
20
0
11 Jan 2023
Archimedes Meets Privacy: On Privately Estimating Quantiles in High
  Dimensions Under Minimal Assumptions
Archimedes Meets Privacy: On Privately Estimating Quantiles in High Dimensions Under Minimal Assumptions
Omri Ben-Eliezer
Dan Mikulincer
Ilias Zadik
FedML
58
7
0
15 Aug 2022
Asymptotics of $\ell_2$ Regularized Network Embeddings
Asymptotics of ℓ2\ell_2ℓ2​ Regularized Network Embeddings
A. Davison
25
0
0
05 Jan 2022
Robust Estimation for Random Graphs
Robust Estimation for Random Graphs
Jayadev Acharya
Ayush Jain
Gautam Kamath
A. Suresh
Huanyu Zhang
30
8
0
09 Nov 2021
Modularity maximisation for graphons
Modularity maximisation for graphons
F. Klimm
N. Jones
Michael T. Schaub
23
1
0
02 Jan 2021
Optimal Private Median Estimation under Minimal Distributional
  Assumptions
Optimal Private Median Estimation under Minimal Distributional Assumptions
Christos Tzamos
Emmanouil-Vasileios Vlatakis-Gkaragkounis
Ilias Zadik
27
21
0
12 Nov 2020
A Primer on Private Statistics
A Primer on Private Statistics
Gautam Kamath
Jonathan R. Ullman
38
48
0
30 Apr 2020
Private Identity Testing for High-Dimensional Distributions
Private Identity Testing for High-Dimensional Distributions
C. Canonne
Gautam Kamath
Audra McMillan
Jonathan R. Ullman
Lydia Zakynthinou
35
36
0
28 May 2019
1