Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.02113
Cited By
Improving the Segmentation of Anatomical Structures in Chest Radiographs using U-Net with an ImageNet Pre-trained Encoder
4 October 2018
Maayan Frid-Adar
Avi Ben-Cohen
Rula Amer
H. Greenspan
SSeg
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Improving the Segmentation of Anatomical Structures in Chest Radiographs using U-Net with an ImageNet Pre-trained Encoder"
6 / 6 papers shown
Title
Medical Image Segmentation Review: The success of U-Net
Reza Azad
Ehsan Khodapanah Aghdam
Amelie Rauland
Yiwei Jia
Atlas Haddadi Avval
Afshin Bozorgpour
Sanaz Karimijafarbigloo
Joseph Paul Cohen
Ehsan Adeli
Dorit Merhof
SSeg
22
265
0
27 Nov 2022
Modality specific U-Net variants for biomedical image segmentation: A survey
Narinder Singh Punn
Sonali Agarwal
SSeg
29
144
0
09 Jul 2021
An Automated Approach for Timely Diagnosis and Prognosis of Coronavirus Disease
Abbas Raza Ali
M. Budka
27
5
0
29 Apr 2021
U-Net and its variants for medical image segmentation: theory and applications
N. Siddique
Sidike Paheding
Colin P. Elkin
Vijay Devabhaktuni
SSeg
23
1,041
0
02 Nov 2020
Post-DAE: Anatomically Plausible Segmentation via Post-Processing with Denoising Autoencoders
Agostina J. Larrazabal
Cesar E. Martínez
Ben Glocker
Enzo Ferrante
27
65
0
24 Jun 2020
BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray dataset
A. Signoroni
Mattia Savardi
Sergio Benini
Nicola Adami
R. Leonardi
...
F. Vaccher
M. Ravanelli
A. Borghesi
R. Maroldi
D. Farina
16
37
0
08 Jun 2020
1