ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01993
  4. Cited By
Exascale Deep Learning for Climate Analytics

Exascale Deep Learning for Climate Analytics

3 October 2018
Thorsten Kurth
Sean Treichler
Josh Romero
M. Mudigonda
Nathan Luehr
E. Phillips
Ankur Mahesh
Michael A. Matheson
J. Deslippe
M. Fatica
P. Prabhat
Michael Houston
    BDL
ArXivPDFHTML

Papers citing "Exascale Deep Learning for Climate Analytics"

25 / 75 papers shown
Title
Geostatistical Modeling and Prediction Using Mixed-Precision Tile
  Cholesky Factorization
Geostatistical Modeling and Prediction Using Mixed-Precision Tile Cholesky Factorization
Sameh Abdulah
Hatem Ltaief
Ying Sun
M. Genton
David E. Keyes
16
20
0
08 Jan 2020
MetH: A family of high-resolution and variable-shape image challenges
Ferran Parés
Dario Garcia-Gasulla
Harald Servat
Jesús Labarta
Eduard Ayguadé
11
0
0
20 Nov 2019
Progressive Compressed Records: Taking a Byte out of Deep Learning Data
Progressive Compressed Records: Taking a Byte out of Deep Learning Data
Michael Kuchnik
George Amvrosiadis
Virginia Smith
11
9
0
01 Nov 2019
DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion
  Frames
DD-PPO: Learning Near-Perfect PointGoal Navigators from 2.5 Billion Frames
Erik Wijmans
Abhishek Kadian
Ari S. Morcos
Stefan Lee
Irfan Essa
Devi Parikh
Manolis Savva
Dhruv Batra
26
467
0
01 Nov 2019
The Scalability for Parallel Machine Learning Training Algorithm:
  Dataset Matters
The Scalability for Parallel Machine Learning Training Algorithm: Dataset Matters
Daning Cheng
Hanping Zhang
Fen Xia
Shigang Li
Yunquan Zhang
6
1
0
25 Oct 2019
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural
  Networks for the Forecasting of Complex Spatiotemporal Dynamics
Backpropagation Algorithms and Reservoir Computing in Recurrent Neural Networks for the Forecasting of Complex Spatiotemporal Dynamics
Pantelis R. Vlachas
Jaideep Pathak
Brian R. Hunt
T. Sapsis
M. Girvan
Edward Ott
Petros Koumoutsakos
AI4TS
19
383
0
09 Oct 2019
Parallelizing Training of Deep Generative Models on Massive Scientific
  Datasets
Parallelizing Training of Deep Generative Models on Massive Scientific Datasets
S. A. Jacobs
B. Van Essen
D. Hysom
Jae-Seung Yeom
Tim Moon
...
J. Gaffney
Tom Benson
Peter B. Robinson
L. Peterson
B. Spears
BDL
AI4CE
22
17
0
05 Oct 2019
Accelerating Data Loading in Deep Neural Network Training
Accelerating Data Loading in Deep Neural Network Training
Chih-Chieh Yang
Guojing Cong
17
36
0
02 Oct 2019
Deep learning at scale for subgrid modeling in turbulent flows
Deep learning at scale for subgrid modeling in turbulent flows
Mathis Bode
M. Gauding
K. Kleinheinz
H. Pitsch
AI4CE
11
21
0
01 Oct 2019
Exascale Deep Learning to Accelerate Cancer Research
Exascale Deep Learning to Accelerate Cancer Research
Robert M. Patton
J. T. Johnston
Steven R. Young
Catherine D. Schuman
T. Potok
...
Junghoon Chae
L. Hou
Shahira Abousamra
Dimitris Samaras
Joel H. Saltz
16
15
0
26 Sep 2019
DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in
  Spatiotemporal Systems
DisCo: Physics-Based Unsupervised Discovery of Coherent Structures in Spatiotemporal Systems
Adam T. Rupe
Nalini Kumar
V. Epifanov
K. Kashinath
O. Pavlyk
...
M. Patwary
Sergey Maidanov
Victor W. Lee
M. Prabhat
James P. Crutchfield
AI4CE
22
19
0
25 Sep 2019
Exascale Deep Learning for Scientific Inverse Problems
Exascale Deep Learning for Scientific Inverse Problems
N. Laanait
Josh Romero
Junqi Yin
M. T. Young
Sean Treichler
V. Starchenko
A. Borisevich
Alexander Sergeev
Michael A. Matheson
FedML
BDL
27
29
0
24 Sep 2019
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
PPINN: Parareal Physics-Informed Neural Network for time-dependent PDEs
Xuhui Meng
Zhen Li
Dongkun Zhang
George Karniadakis
PINN
AI4CE
22
442
0
23 Sep 2019
Heterogeneity-Aware Asynchronous Decentralized Training
Heterogeneity-Aware Asynchronous Decentralized Training
Qinyi Luo
Jiaao He
Youwei Zhuo
Xuehai Qian
11
8
0
17 Sep 2019
Towards Unsupervised Segmentation of Extreme Weather Events
Towards Unsupervised Segmentation of Extreme Weather Events
Adam T. Rupe
K. Kashinath
Nalini Kumar
Victor W. Lee
P. Prabhat
James P. Crutchfield
18
3
0
16 Sep 2019
Taming Unbalanced Training Workloads in Deep Learning with Partial
  Collective Operations
Taming Unbalanced Training Workloads in Deep Learning with Partial Collective Operations
Shigang Li
Tal Ben-Nun
Salvatore Di Girolamo
Dan Alistarh
Torsten Hoefler
9
58
0
12 Aug 2019
Apache Spark Accelerated Deep Learning Inference for Large Scale
  Satellite Image Analytics
Apache Spark Accelerated Deep Learning Inference for Large Scale Satellite Image Analytics
D. Lunga
Jonathan Gerrand
Lexie Yang
Chris Layton
R. Stewart
30
33
0
08 Aug 2019
HPC AI500: A Benchmark Suite for HPC AI Systems
HPC AI500: A Benchmark Suite for HPC AI Systems
Zihan Jiang
Wanling Gao
Lei Wang
Xingwang Xiong
Yuchen Zhang
...
Yunquan Zhang
Shengzhong Feng
KenLi Li
Weijia Xu
Jianfeng Zhan
ELM
16
40
0
27 Jul 2019
A Differentiable Programming System to Bridge Machine Learning and
  Scientific Computing
A Differentiable Programming System to Bridge Machine Learning and Scientific Computing
Mike Innes
Alan Edelman
Keno Fischer
Chris Rackauckas
Elliot Saba
Viral B. Shah
Will Tebbutt
PINN
19
183
0
17 Jul 2019
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at
  Scale
Etalumis: Bringing Probabilistic Programming to Scientific Simulators at Scale
A. G. Baydin
Lei Shao
W. Bhimji
Lukas Heinrich
Lawrence Meadows
...
Philip H. S. Torr
Victor W. Lee
Kyle Cranmer
P. Prabhat
Frank D. Wood
25
55
0
08 Jul 2019
Deep Learning for Spatio-Temporal Data Mining: A Survey
Deep Learning for Spatio-Temporal Data Mining: A Survey
Senzhang Wang
Jiannong Cao
Philip S. Yu
AI4TS
26
549
0
11 Jun 2019
Tackling Climate Change with Machine Learning
Tackling Climate Change with Machine Learning
David Rolnick
P. Donti
L. Kaack
K. Kochanski
Alexandre Lacoste
...
Demis Hassabis
John C. Platt
F. Creutzig
J. Chayes
Yoshua Bengio
AI4Cl
AI4CE
22
784
0
10 Jun 2019
Combining crowd-sourcing and deep learning to explore the meso-scale
  organization of shallow convection
Combining crowd-sourcing and deep learning to explore the meso-scale organization of shallow convection
S. Rasp
H. Schulz
S. Bony
B. Stevens
24
54
0
05 Jun 2019
Visualizing the Consequences of Climate Change Using Cycle-Consistent
  Adversarial Networks
Visualizing the Consequences of Climate Change Using Cycle-Consistent Adversarial Networks
Victor Schmidt
A. Luccioni
S. Mukkavilli
Narmada M. Balasooriya
Kris Sankaran
J. Chayes
Yoshua Bengio
GAN
14
36
0
02 May 2019
Improving Strong-Scaling of CNN Training by Exploiting Finer-Grained
  Parallelism
Improving Strong-Scaling of CNN Training by Exploiting Finer-Grained Parallelism
Nikoli Dryden
N. Maruyama
Tom Benson
Tim Moon
M. Snir
B. Van Essen
18
49
0
15 Mar 2019
Previous
12