Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.01943
Cited By
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias
3 October 2018
Rachel K. E. Bellamy
Kuntal Dey
Michael Hind
Samuel C. Hoffman
Stephanie Houde
Kalapriya Kannan
P. Lohia
Jacquelyn Martino
S. Mehta
Aleksandra Mojsilović
Seema Nagar
K. Ramamurthy
John T. Richards
Diptikalyan Saha
P. Sattigeri
Moninder Singh
Kush R. Varshney
Yunfeng Zhang
FaML
SyDa
Re-assign community
ArXiv
PDF
HTML
Papers citing
"AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias"
50 / 370 papers shown
Title
The Fairness Field Guide: Perspectives from Social and Formal Sciences
Alycia N. Carey
Xintao Wu
FaML
14
5
0
13 Jan 2022
Fairness Score and Process Standardization: Framework for Fairness Certification in Artificial Intelligence Systems
Avinash Agarwal
Harshna Agarwal
Nihaarika Agarwal
34
28
0
10 Jan 2022
NeuronFair: Interpretable White-Box Fairness Testing through Biased Neuron Identification
Haibin Zheng
Zhiqing Chen
Tianyu Du
Xuhong Zhang
Yao Cheng
S. Ji
Jingyi Wang
Yue Yu
Jinyin Chen
11
50
0
25 Dec 2021
Forward Composition Propagation for Explainable Neural Reasoning
Isel Grau
Gonzalo Nápoles
M. Bello
Yamisleydi Salgueiro
A. Jastrzębska
22
0
0
23 Dec 2021
Modeling Implicit Bias with Fuzzy Cognitive Maps
Gonzalo Nápoles
Isel Grau
Leonardo Concepción
Lisa Koutsoviti Koumeri
João Paulo Papa
16
26
0
23 Dec 2021
AI Ethics Principles in Practice: Perspectives of Designers and Developers
Conrad Sanderson
David M. Douglas
Qinghua Lu
Emma Schleiger
Jon Whittle
J. Lacey
G. Newnham
S. Hajkowicz
Cathy J. Robinson
David Hansen
FaML
31
46
0
14 Dec 2021
A Framework for Fairness: A Systematic Review of Existing Fair AI Solutions
Brianna Richardson
J. Gilbert
FaML
21
36
0
10 Dec 2021
The Box Size Confidence Bias Harms Your Object Detector
Johannes Gilg
Torben Teepe
Fabian Herzog
Gerhard Rigoll
ObjD
19
4
0
03 Dec 2021
Learning Fair Classifiers with Partially Annotated Group Labels
Sangwon Jung
Sanghyuk Chun
Taesup Moon
65
46
0
29 Nov 2021
Fair-SSL: Building fair ML Software with less data
Joymallya Chakraborty
Suvodeep Majumder
Huy Tu
SyDa
11
5
0
03 Nov 2021
Deep AUC Maximization for Medical Image Classification: Challenges and Opportunities
Tianbao Yang
30
3
0
01 Nov 2021
Profit equitably: An investigation of market maker's impact on equitable outcomes
Kshama Dwarakanath
Svitlana Vyetrenko
T. Balch
14
3
0
29 Oct 2021
UDIS: Unsupervised Discovery of Bias in Deep Visual Recognition Models
Arvindkumar Krishnakumar
Tong He
Shengji Tang
Judy Hoffman
21
30
0
29 Oct 2021
Selective Regression Under Fairness Criteria
Abhin Shah
Yuheng Bu
Joshua K. Lee
Subhro Das
Rameswar Panda
P. Sattigeri
G. Wornell
22
27
0
28 Oct 2021
Feature and Label Embedding Spaces Matter in Addressing Image Classifier Bias
William Thong
Cees G. M. Snoek
17
14
0
27 Oct 2021
Fair Enough: Searching for Sufficient Measures of Fairness
Suvodeep Majumder
Joymallya Chakraborty
Gina R. Bai
Kathryn T. Stolee
Tim Menzies
22
26
0
25 Oct 2021
fairadapt: Causal Reasoning for Fair Data Pre-processing
Drago Plečko
Nicolas Bennett
N. Meinshausen
FaML
6
8
0
19 Oct 2021
Developing a novel fair-loan-predictor through a multi-sensitive debiasing pipeline: DualFair
Ashutosh Kumar Singh
Jashandeep Singh
Ariba Khan
Amar Gupta
FaML
21
3
0
17 Oct 2021
Systematic Inequalities in Language Technology Performance across the World's Languages
Damián E. Blasi
Antonios Anastasopoulos
Graham Neubig
127
131
0
13 Oct 2021
The Rich Get Richer: Disparate Impact of Semi-Supervised Learning
Zhaowei Zhu
Tianyi Luo
Yang Liu
150
39
0
12 Oct 2021
Trustworthy AI: From Principles to Practices
Bo-wen Li
Peng Qi
Bo Liu
Shuai Di
Jingen Liu
Jiquan Pei
Jinfeng Yi
Bowen Zhou
119
355
0
04 Oct 2021
FairMask: Better Fairness via Model-based Rebalancing of Protected Attributes
Kewen Peng
Joymallya Chakraborty
Tim Menzies
FaML
43
29
0
03 Oct 2021
An Empirical Study of Accuracy, Fairness, Explainability, Distributional Robustness, and Adversarial Robustness
Moninder Singh
Gevorg Ghalachyan
Kush R. Varshney
R. Bryant
16
9
0
29 Sep 2021
Understanding Relations Between Perception of Fairness and Trust in Algorithmic Decision Making
Jianlong Zhou
Sunny Verma
Mudit Mittal
Fang Chen
FaML
6
9
0
29 Sep 2021
Equality of opportunity in travel behavior prediction with deep neural networks and discrete choice models
Yunhan Zheng
Shenhao Wang
Jinhuan Zhao
HAI
24
27
0
25 Sep 2021
On the Fairness of Swarm Learning in Skin Lesion Classification
Dian Fan
Yifan Wu
Xiaoxiao Li
43
20
0
24 Sep 2021
Fairness without Imputation: A Decision Tree Approach for Fair Prediction with Missing Values
Haewon Jeong
Hao Wang
Flavio du Pin Calmon
FaML
51
33
0
21 Sep 2021
Algorithmic Fairness Verification with Graphical Models
Bishwamittra Ghosh
D. Basu
Kuldeep S. Meel
FaML
21
18
0
20 Sep 2021
Finding Representative Group Fairness Metrics Using Correlation Estimations
Hadis Anahideh
Nazanin Nezami
Abolfazl Asudeh
29
1
0
13 Sep 2021
College Student Retention Risk Analysis From Educational Database using Multi-Task Multi-Modal Neural Fusion
Mohammad Arif Ul Alam
14
7
0
11 Sep 2021
A Systematic Approach to Group Fairness in Automated Decision Making
Corinna Hertweck
Christoph Heitz
FaML
11
2
0
09 Sep 2021
FADE: FAir Double Ensemble Learning for Observable and Counterfactual Outcomes
Alan Mishler
Edward H. Kennedy
FaML
29
23
0
01 Sep 2021
A fuzzy-rough uncertainty measure to discover bias encoded explicitly or implicitly in features of structured pattern classification datasets
Gonzalo Nápoles
Lisa Koutsoviti Koumeri
21
17
0
20 Aug 2021
Data Quality Toolkit: Automatic assessment of data quality and remediation for machine learning datasets
Nitin Gupta
Hima Patel
S. Afzal
Naveen Panwar
Ruhi Sharma Mittal
...
S. Mehta
Sandeep Hans
P. Lohia
Aniya Aggarwal
Diptikalyan Saha
28
40
0
12 Aug 2021
Learning Bias-Invariant Representation by Cross-Sample Mutual Information Minimization
Wei-wei Zhu
Haitian Zheng
Haofu Liao
Weijian Li
Jiebo Luo
32
43
0
11 Aug 2021
Mitigating Dataset Harms Requires Stewardship: Lessons from 1000 Papers
Kenny Peng
Arunesh Mathur
Arvind Narayanan
99
93
0
06 Aug 2021
Fairness in Algorithmic Profiling: A German Case Study
Christoph Kern
Ruben L. Bach
H. Mautner
Frauke Kreuter
42
13
0
04 Aug 2021
Responsible and Regulatory Conform Machine Learning for Medicine: A Survey of Challenges and Solutions
Eike Petersen
Yannik Potdevin
Esfandiar Mohammadi
Stephan Zidowitz
Sabrina Breyer
...
Sandra Henn
Ludwig Pechmann
M. Leucker
P. Rostalski
Christian Herzog
FaML
AILaw
OOD
29
21
0
20 Jul 2021
FairBalance: How to Achieve Equalized Odds With Data Pre-processing
Zhe Yu
Joymallya Chakraborty
Tim Menzies
FaML
43
3
0
17 Jul 2021
DiRe Committee : Diversity and Representation Constraints in Multiwinner Elections
Kunal Relia
24
6
0
15 Jul 2021
Trustworthy AI: A Computational Perspective
Haochen Liu
Yiqi Wang
Wenqi Fan
Xiaorui Liu
Yaxin Li
Shaili Jain
Yunhao Liu
Anil K. Jain
Jiliang Tang
FaML
104
196
0
12 Jul 2021
Tight Mutual Information Estimation With Contrastive Fenchel-Legendre Optimization
Qing Guo
Junya Chen
Dong Wang
Yuewei Yang
Xinwei Deng
Lawrence Carin
Fan Li
Jing-Zheng Huang
Chenyang Tao
29
19
0
02 Jul 2021
Fairness via Representation Neutralization
Mengnan Du
Subhabrata Mukherjee
Guanchu Wang
Ruixiang Tang
Ahmed Hassan Awadallah
Xia Hu
25
78
0
23 Jun 2021
Understanding and Evaluating Racial Biases in Image Captioning
Dora Zhao
Angelina Wang
Olga Russakovsky
21
134
0
16 Jun 2021
Can Explainable AI Explain Unfairness? A Framework for Evaluating Explainable AI
Kiana Alikhademi
Brianna Richardson
E. Drobina
J. Gilbert
22
33
0
14 Jun 2021
FairCanary: Rapid Continuous Explainable Fairness
Avijit Ghosh
Aalok Shanbhag
Christo Wilson
11
20
0
13 Jun 2021
Fair Classification with Adversarial Perturbations
L. E. Celis
Anay Mehrotra
Nisheeth K. Vishnoi
FaML
21
32
0
10 Jun 2021
Fair Machine Learning under Limited Demographically Labeled Data
Mustafa Safa Ozdayi
Murat Kantarcioglu
Rishabh K. Iyer
FaML
15
3
0
03 Jun 2021
Fair Preprocessing: Towards Understanding Compositional Fairness of Data Transformers in Machine Learning Pipeline
Sumon Biswas
Hridesh Rajan
18
110
0
02 Jun 2021
Know Your Model (KYM): Increasing Trust in AI and Machine Learning
Mary Roszel
Robert Norvill
Jean Hilger
R. State
28
4
0
31 May 2021
Previous
1
2
3
4
5
6
7
8
Next