ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01811
  4. Cited By
McTorch, a manifold optimization library for deep learning

McTorch, a manifold optimization library for deep learning

3 October 2018
Mayank Meghwanshi
Pratik Jawanpuria
Anoop Kunchukuttan
Hiroyuki Kasai
Bamdev Mishra
    AI4CE
ArXivPDFHTML

Papers citing "McTorch, a manifold optimization library for deep learning"

11 / 11 papers shown
Title
Riemannian Optimization on Relaxed Indicator Matrix Manifold
Riemannian Optimization on Relaxed Indicator Matrix Manifold
Jinghui Yuan
Fangyuan Xie
Feiping Nie
Xuelong Li
75
0
0
26 Mar 2025
A Survey of Geometric Optimization for Deep Learning: From Euclidean
  Space to Riemannian Manifold
A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold
Yanhong Fei
Xian Wei
Yingjie Liu
Zhengyu Li
Mingsong Chen
28
6
0
16 Feb 2023
Riemannian Hamiltonian methods for min-max optimization on manifolds
Riemannian Hamiltonian methods for min-max optimization on manifolds
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Pawan Kumar
Junbin Gao
38
17
0
25 Apr 2022
NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in
  Machine Learning
NCVX: A User-Friendly and Scalable Package for Nonconvex Optimization in Machine Learning
Buyun Liang
Tim Mitchell
Ju Sun
17
3
0
27 Nov 2021
Coordinate descent on the orthogonal group for recurrent neural network
  training
Coordinate descent on the orthogonal group for recurrent neural network training
E. Massart
V. Abrol
37
10
0
30 Jul 2021
On Riemannian Optimization over Positive Definite Matrices with the
  Bures-Wasserstein Geometry
On Riemannian Optimization over Positive Definite Matrices with the Bures-Wasserstein Geometry
Andi Han
Bamdev Mishra
Pratik Jawanpuria
Junbin Gao
21
38
0
01 Jun 2021
Manifold optimization for non-linear optimal transport problems
Manifold optimization for non-linear optimal transport problems
Bamdev Mishra
N. Satyadev
Hiroyuki Kasai
Pratik Jawanpuria
OT
6
10
0
01 Mar 2021
Riemannian stochastic recursive momentum method for non-convex
  optimization
Riemannian stochastic recursive momentum method for non-convex optimization
Andi Han
Junbin Gao
ODL
28
17
0
11 Aug 2020
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Learning a Compressed Sensing Measurement Matrix via Gradient Unrolling
Shanshan Wu
A. Dimakis
Sujay Sanghavi
Felix X. Yu
D. Holtmann-Rice
Dmitry Storcheus
Afshin Rostamizadeh
Sanjiv Kumar
SSL
23
53
0
26 Jun 2018
geomstats: a Python Package for Riemannian Geometry in Machine Learning
geomstats: a Python Package for Riemannian Geometry in Machine Learning
Nina Miolane
Johan Mathe
Claire Donnat
Mikael Jorda
Xavier Pennec
AI4CE
37
123
0
21 May 2018
Geometric Mean Metric Learning
Geometric Mean Metric Learning
P. Zadeh
Reshad Hosseini
S. Sra
45
166
0
18 Jul 2016
1