ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01539
  4. Cited By
Automated learning with a probabilistic programming language: Birch
v1v2 (latest)

Automated learning with a probabilistic programming language: Birch

2 October 2018
Lawrence M. Murray
Thomas B. Schon
ArXiv (abs)PDFHTML

Papers citing "Automated learning with a probabilistic programming language: Birch"

23 / 23 papers shown
Title
Pyro: Deep Universal Probabilistic Programming
Pyro: Deep Universal Probabilistic Programming
Eli Bingham
Jonathan P. Chen
M. Jankowiak
F. Obermeyer
Neeraj Pradhan
Theofanis Karaletsos
Rohit Singh
Paul A. Szerlip
Paul Horsfall
Noah D. Goodman
BDLGP
158
1,057
0
18 Oct 2018
Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic
  Programs
Delayed Sampling and Automatic Rao-Blackwellization of Probabilistic Programs
Lawrence M. Murray
Daniel Lundén
J. Kudlicka
David Broman
Thomas B. Schon
52
60
0
25 Aug 2017
Probabilistic learning of nonlinear dynamical systems using sequential
  Monte Carlo
Probabilistic learning of nonlinear dynamical systems using sequential Monte Carlo
Thomas B. Schon
Andreas Svensson
Lawrence M. Murray
Fredrik Lindsten
54
41
0
07 Mar 2017
Edward: A library for probabilistic modeling, inference, and criticism
Edward: A library for probabilistic modeling, inference, and criticism
Dustin Tran
A. Kucukelbir
Adji Bousso Dieng
Maja R. Rudolph
Dawen Liang
David M. Blei
93
300
0
31 Oct 2016
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis
  of Big Data
The Zig-Zag Process and Super-Efficient Sampling for Bayesian Analysis of Big Data
J. Bierkens
Paul Fearnhead
Gareth O. Roberts
96
233
0
11 Jul 2016
Data-driven Sequential Monte Carlo in Probabilistic Programming
Data-driven Sequential Monte Carlo in Probabilistic Programming
Yura N. Perov
T. Le
Frank Wood
BDL
37
7
0
14 Dec 2015
The Correlated Pseudo-Marginal Method
The Correlated Pseudo-Marginal Method
George Deligiannidis
Arnaud Doucet
M. Pitt
110
101
0
16 Nov 2015
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov
  Chain Monte Carlo Method
The Bouncy Particle Sampler: A Non-Reversible Rejection-Free Markov Chain Monte Carlo Method
Alexandre Bouchard-Côté
Sebastian J. Vollmer
Arnaud Doucet
98
237
0
08 Oct 2015
A New Approach to Probabilistic Programming Inference
A New Approach to Probabilistic Programming Inference
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
72
347
0
03 Jul 2015
Programming with models: writing statistical algorithms for general
  model structures with NIMBLE
Programming with models: writing statistical algorithms for general model structures with NIMBLE
P. de Valpine
Daniel Turek
C. Paciorek
Clifford Anderson-Bergman
D. Lang
Rastislav Bodík
88
857
0
19 May 2015
On Markov chain Monte Carlo methods for tall data
On Markov chain Monte Carlo methods for tall data
Rémi Bardenet
Arnaud Doucet
Chris Holmes
73
279
0
11 May 2015
Sequential Monte Carlo Methods for System Identification
Sequential Monte Carlo Methods for System Identification
Thomas B. Schon
Fredrik Lindsten
J. Dahlin
Johan Waagberg
C. A. Naesseth
Andreas Svensson
L. Dai
92
79
0
20 Mar 2015
Biips: Software for Bayesian Inference with Interacting Particle Systems
Biips: Software for Bayesian Inference with Interacting Particle Systems
A. Todeschini
François Caron
Marc Fuentes
P. Legrand
P. Del Moral
58
26
0
11 Dec 2014
Divide-and-Conquer with Sequential Monte Carlo
Divide-and-Conquer with Sequential Monte Carlo
Fredrik Lindsten
A. M. Johansen
C. A. Naesseth
Bonnie Kirkpatrick
Thomas B. Schon
J. Aston
Alexandre Bouchard-Côté
93
45
0
19 Jun 2014
Sequential Monte Carlo with Highly Informative Observations
Sequential Monte Carlo with Highly Informative Observations
P. Del Moral
Lawrence M. Murray
93
53
0
16 May 2014
Venture: a higher-order probabilistic programming platform with
  programmable inference
Venture: a higher-order probabilistic programming platform with programmable inference
Vikash K. Mansinghka
Daniel Selsam
Yura N. Perov
87
256
0
01 Apr 2014
A Compilation Target for Probabilistic Programming Languages
A Compilation Target for Probabilistic Programming Languages
Brooks Paige
Frank Wood
97
80
0
03 Mar 2014
Sequential Quasi-Monte Carlo
Sequential Quasi-Monte Carlo
Mathieu Gerber
Nicolas Chopin
154
56
0
17 Feb 2014
Bayesian State-Space Modelling on High-Performance Hardware Using LibBi
Bayesian State-Space Modelling on High-Performance Hardware Using LibBi
Lawrence M. Murray
97
113
0
14 Jun 2013
Twisted particle filters
Twisted particle filters
N. Whiteley
Anthony Lee
126
41
0
30 Sep 2012
Church: a language for generative models
Church: a language for generative models
Noah D. Goodman
Vikash K. Mansinghka
Daniel M. Roy
Keith Bonawitz
J. Tenenbaum
112
820
0
13 Jun 2012
On Disturbance State-Space Models and the Particle Marginal
  Metropolis-Hastings Sampler
On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler
Lawrence M. Murray
E. Jones
J. Parslow
112
31
0
28 Feb 2012
SMC^2: an efficient algorithm for sequential analysis of state-space
  models
SMC^2: an efficient algorithm for sequential analysis of state-space models
Nicolas Chopin
Pierre E. Jacob
O. Papaspiliopoulos
103
357
0
07 Jan 2011
1