ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01531
  4. Cited By
A Practical Approach to Insertion with Variable Socket Position Using
  Deep Reinforcement Learning
v1v2 (latest)

A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning

2 October 2018
Mel Vecerík
Oleg O. Sushkov
David Barker
Thomas Rothörl
Todd Hester
Jonathan Scholz
ArXiv (abs)PDFHTML

Papers citing "A Practical Approach to Insertion with Variable Socket Position Using Deep Reinforcement Learning"

19 / 19 papers shown
Title
FORGE: Force-Guided Exploration for Robust Contact-Rich Manipulation under Uncertainty
FORGE: Force-Guided Exploration for Robust Contact-Rich Manipulation under Uncertainty
Michael Noseworthy
Bingjie Tang
Bowen Wen
Ankur Handa
Nicholas Roy
Nicholas Roy
Dieter Fox
Yashraj S. Narang
Iretiayo Akinola
Iretiayo Akinola
92
11
0
08 Aug 2024
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
SERL: A Software Suite for Sample-Efficient Robotic Reinforcement Learning
Jianlan Luo
Zheyuan Hu
Charles Xu
You Liang Tan
Jacob Berg
Archit Sharma
S. Schaal
Chelsea Finn
Abhishek Gupta
Sergey Levine
OffRLOnRL
128
49
0
29 Jan 2024
Sim-to-Real Reinforcement Learning for Deformable Object Manipulation
Sim-to-Real Reinforcement Learning for Deformable Object Manipulation
J. Matas
Stephen James
Andrew J. Davison
AI4CE
70
360
0
20 Jun 2018
A Framework for Robot Manipulation: Skill Formalism, Meta Learning and
  Adaptive Control
A Framework for Robot Manipulation: Skill Formalism, Meta Learning and Adaptive Control
Lars Johannsmeier
Malkin Gerchow
Sami Haddadin
54
111
0
22 May 2018
Setting up a Reinforcement Learning Task with a Real-World Robot
Setting up a Reinforcement Learning Task with a Real-World Robot
A. R. Mahmood
D. Korenkevych
Brent Komer
James Bergstra
71
77
0
19 Mar 2018
Overcoming Exploration in Reinforcement Learning with Demonstrations
Overcoming Exploration in Reinforcement Learning with Demonstrations
Ashvin Nair
Bob McGrew
Marcin Andrychowicz
Wojciech Zaremba
Pieter Abbeel
OffRL
102
789
0
28 Sep 2017
Deep Reinforcement Learning for High Precision Assembly Tasks
Deep Reinforcement Learning for High Precision Assembly Tasks
Tadanobu Inoue
Giovanni De Magistris
Asim Munawar
T. Yokoya
Ryuki Tachibana
71
268
0
14 Aug 2017
Leveraging Demonstrations for Deep Reinforcement Learning on Robotics
  Problems with Sparse Rewards
Leveraging Demonstrations for Deep Reinforcement Learning on Robotics Problems with Sparse Rewards
Matej Vecerík
Todd Hester
Jonathan Scholz
Fumin Wang
Olivier Pietquin
Bilal Piot
N. Heess
Thomas Rothörl
Thomas Lampe
Martin Riedmiller
OffRL
97
669
0
27 Jul 2017
A Distributional Perspective on Reinforcement Learning
A Distributional Perspective on Reinforcement Learning
Marc G. Bellemare
Will Dabney
Rémi Munos
OffRL
101
1,506
0
21 Jul 2017
PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured
  State Representations
PVEs: Position-Velocity Encoders for Unsupervised Learning of Structured State Representations
Rico Jonschkowski
Roland Hafner
Jonathan Scholz
Martin Riedmiller
64
67
0
27 May 2017
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
Data-efficient Deep Reinforcement Learning for Dexterous Manipulation
I. Popov
N. Heess
Timothy Lillicrap
Roland Hafner
Gabriel Barth-Maron
Matej Vecerík
Thomas Lampe
Yuval Tassa
Tom Erez
Martin Riedmiller
OffRL
92
265
0
10 Apr 2017
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial
  Networks
Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks
Konstantinos Bousmalis
N. Silberman
David Dohan
D. Erhan
Dilip Krishnan
OODGAN
163
1,537
0
16 Dec 2016
Sim-to-Real Robot Learning from Pixels with Progressive Nets
Sim-to-Real Robot Learning from Pixels with Progressive Nets
Andrei A. Rusu
Matej Vecerík
Thomas Rothörl
N. Heess
Razvan Pascanu
R. Hadsell
100
534
0
13 Oct 2016
SoftTarget Regularization: An Effective Technique to Reduce Over-Fitting
  in Neural Networks
SoftTarget Regularization: An Effective Technique to Reduce Over-Fitting in Neural Networks
Armen Aghajanyan
68
16
0
21 Sep 2016
Deep Spatial Autoencoders for Visuomotor Learning
Deep Spatial Autoencoders for Visuomotor Learning
Chelsea Finn
X. Tan
Yan Duan
Trevor Darrell
Sergey Levine
Pieter Abbeel
SSL
58
552
0
21 Sep 2015
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
330
13,289
0
09 Sep 2015
End-to-End Training of Deep Visuomotor Policies
End-to-End Training of Deep Visuomotor Policies
Sergey Levine
Chelsea Finn
Trevor Darrell
Pieter Abbeel
BDL
315
3,444
0
02 Apr 2015
How transferable are features in deep neural networks?
How transferable are features in deep neural networks?
J. Yosinski
Jeff Clune
Yoshua Bengio
Hod Lipson
OOD
238
8,363
0
06 Nov 2014
Auto-Encoding Variational Bayes
Auto-Encoding Variational Bayes
Diederik P. Kingma
Max Welling
BDL
458
16,922
0
20 Dec 2013
1