Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1810.01279
Cited By
v1
v2 (latest)
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
1 October 2018
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network"
7 / 57 papers shown
Title
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
98
101
0
08 Jun 2019
Adversarially Robust Generalization Just Requires More Unlabeled Data
Runtian Zhai
Tianle Cai
Di He
Chen Dan
Kun He
John E. Hopcroft
Liwei Wang
98
158
0
03 Jun 2019
NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks
Yandong Li
Lijun Li
Liqiang Wang
Tong Zhang
Boqing Gong
AAML
101
245
0
01 May 2019
Adversarial Robustness vs Model Compression, or Both?
Shaokai Ye
Kaidi Xu
Sijia Liu
Jan-Henrik Lambrechts
Huan Zhang
Aojun Zhou
Kaisheng Ma
Yanzhi Wang
Xue Lin
AAML
114
165
0
29 Mar 2019
Robust Decision Trees Against Adversarial Examples
Hongge Chen
Huan Zhang
Duane S. Boning
Cho-Jui Hsieh
AAML
142
117
0
27 Feb 2019
The Limitations of Model Uncertainty in Adversarial Settings
Kathrin Grosse
David Pfaff
M. Smith
Michael Backes
AAML
63
34
0
06 Dec 2018
Parametric Noise Injection: Trainable Randomness to Improve Deep Neural Network Robustness against Adversarial Attack
Adnan Siraj Rakin
Zhezhi He
Deliang Fan
AAML
69
292
0
22 Nov 2018
Previous
1
2