ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01257
  4. Cited By
Near-Optimal Representation Learning for Hierarchical Reinforcement
  Learning

Near-Optimal Representation Learning for Hierarchical Reinforcement Learning

2 October 2018
Ofir Nachum
S. Gu
Honglak Lee
Sergey Levine
ArXivPDFHTML

Papers citing "Near-Optimal Representation Learning for Hierarchical Reinforcement Learning"

7 / 57 papers shown
Title
Learning Representations in Reinforcement Learning:An Information
  Bottleneck Approach
Learning Representations in Reinforcement Learning:An Information Bottleneck Approach
Yingjun Pei
Xinwen Hou
SSL
39
10
0
12 Nov 2019
HRL4IN: Hierarchical Reinforcement Learning for Interactive Navigation
  with Mobile Manipulators
HRL4IN: Hierarchical Reinforcement Learning for Interactive Navigation with Mobile Manipulators
Chengshu Li
Fei Xia
R. M. Martin
Silvio Savarese
30
100
0
24 Oct 2019
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Why Does Hierarchy (Sometimes) Work So Well in Reinforcement Learning?
Ofir Nachum
Haoran Tang
Xingyu Lu
S. Gu
Honglak Lee
Sergey Levine
29
100
0
23 Sep 2019
Dynamics-aware Embeddings
Dynamics-aware Embeddings
William F. Whitney
Rajat Agarwal
Kyunghyun Cho
Abhinav Gupta
SSL
25
53
0
25 Aug 2019
Compositional Transfer in Hierarchical Reinforcement Learning
Compositional Transfer in Hierarchical Reinforcement Learning
Markus Wulfmeier
A. Abdolmaleki
Roland Hafner
Jost Tobias Springenberg
Michael Neunert
Tim Hertweck
Thomas Lampe
Noah Y. Siegel
N. Heess
Martin Riedmiller
30
27
0
26 Jun 2019
Unsupervised State Representation Learning in Atari
Unsupervised State Representation Learning in Atari
Ankesh Anand
Evan Racah
Sherjil Ozair
Yoshua Bengio
Marc-Alexandre Côté
R. Devon Hjelm
SSL
44
254
0
19 Jun 2019
Learning Compositional Neural Programs with Recursive Tree Search and
  Planning
Learning Compositional Neural Programs with Recursive Tree Search and Planning
Thomas Pierrot
Guillaume Ligner
Scott E. Reed
Olivier Sigaud
Nicolas Perrin
Alexandre Laterre
David Kas
Karim Beguir
Nando de Freitas
41
41
0
30 May 2019
Previous
12