ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.01222
  4. Cited By
CEM-RL: Combining evolutionary and gradient-based methods for policy
  search
v1v2v3 (latest)

CEM-RL: Combining evolutionary and gradient-based methods for policy search

2 October 2018
Aloïs Pourchot
Olivier Sigaud
ArXiv (abs)PDFHTML

Papers citing "CEM-RL: Combining evolutionary and gradient-based methods for policy search"

27 / 27 papers shown
Title
Social Interpretable Reinforcement Learning
Social Interpretable Reinforcement Learning
Leonardo Lucio Custode
Giovanni Iacca
OffRL
193
2
0
27 Jan 2024
Importance mixing: Improving sample reuse in evolutionary policy search
  methods
Importance mixing: Improving sample reuse in evolutionary policy search methods
Aloïs Pourchot
Nicolas Perrin
Olivier Sigaud
44
14
0
17 Aug 2018
Guided evolutionary strategies: Augmenting random search with surrogate
  gradients
Guided evolutionary strategies: Augmenting random search with surrogate gradients
Niru Maheswaranathan
Luke Metz
George Tucker
Dami Choi
Jascha Narain Sohl-Dickstein
60
20
0
26 Jun 2018
Evolution-Guided Policy Gradient in Reinforcement Learning
Evolution-Guided Policy Gradient in Reinforcement Learning
Shauharda Khadka
Kagan Tumer
112
228
0
21 May 2018
Policy Search in Continuous Action Domains: an Overview
Policy Search in Continuous Action Domains: an Overview
Olivier Sigaud
F. Stulp
34
72
0
13 Mar 2018
Addressing Function Approximation Error in Actor-Critic Methods
Addressing Function Approximation Error in Actor-Critic Methods
Scott Fujimoto
H. V. Hoof
David Meger
OffRL
175
5,187
0
26 Feb 2018
Meta-Reinforcement Learning of Structured Exploration Strategies
Meta-Reinforcement Learning of Structured Exploration Strategies
Abhishek Gupta
Russell Mendonca
YuXuan Liu
Pieter Abbeel
Sergey Levine
OffRL
110
345
0
20 Feb 2018
GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement
  Learning Algorithms
GEP-PG: Decoupling Exploration and Exploitation in Deep Reinforcement Learning Algorithms
Cédric Colas
Olivier Sigaud
Pierre-Yves Oudeyer
55
159
0
14 Feb 2018
Evolved Policy Gradients
Evolved Policy Gradients
Rein Houthooft
Richard Y. Chen
Phillip Isola
Bradly C. Stadie
Filip Wolski
Jonathan Ho
Pieter Abbeel
98
227
0
13 Feb 2018
ES Is More Than Just a Traditional Finite-Difference Approximator
ES Is More Than Just a Traditional Finite-Difference Approximator
Joel Lehman
Jay Chen
Jeff Clune
Kenneth O. Stanley
72
89
0
18 Dec 2017
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative
  for Training Deep Neural Networks for Reinforcement Learning
Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
F. Such
Vashisht Madhavan
Edoardo Conti
Joel Lehman
Kenneth O. Stanley
Jeff Clune
99
692
0
18 Dec 2017
Improving Exploration in Evolution Strategies for Deep Reinforcement
  Learning via a Population of Novelty-Seeking Agents
Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
Edoardo Conti
Vashisht Madhavan
F. Such
Joel Lehman
Kenneth O. Stanley
Jeff Clune
63
347
0
18 Dec 2017
Deep Reinforcement Learning that Matters
Deep Reinforcement Learning that Matters
Peter Henderson
Riashat Islam
Philip Bachman
Joelle Pineau
Doina Precup
David Meger
OffRL
118
1,954
0
19 Sep 2017
Proximal Policy Optimization Algorithms
Proximal Policy Optimization Algorithms
John Schulman
Filip Wolski
Prafulla Dhariwal
Alec Radford
Oleg Klimov
OffRL
499
19,065
0
20 Jul 2017
Parameter Space Noise for Exploration
Parameter Space Noise for Exploration
Matthias Plappert
Rein Houthooft
Prafulla Dhariwal
Szymon Sidor
Richard Y. Chen
Xi Chen
Tamim Asfour
Pieter Abbeel
Marcin Andrychowicz
57
596
0
06 Jun 2017
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Evolution Strategies as a Scalable Alternative to Reinforcement Learning
Tim Salimans
Jonathan Ho
Xi Chen
Szymon Sidor
Ilya Sutskever
92
1,538
0
10 Mar 2017
Learning to reinforcement learn
Learning to reinforcement learn
Jane X. Wang
Z. Kurth-Nelson
Dhruva Tirumala
Hubert Soyer
Joel Z Leibo
Rémi Munos
Charles Blundell
D. Kumaran
M. Botvinick
OffRL
97
980
0
17 Nov 2016
Neural Architecture Search with Reinforcement Learning
Neural Architecture Search with Reinforcement Learning
Barret Zoph
Quoc V. Le
465
5,373
0
05 Nov 2016
Benchmarking Deep Reinforcement Learning for Continuous Control
Benchmarking Deep Reinforcement Learning for Continuous Control
Yan Duan
Xi Chen
Rein Houthooft
John Schulman
Pieter Abbeel
OffRL
82
1,694
0
22 Apr 2016
The CMA Evolution Strategy: A Tutorial
The CMA Evolution Strategy: A Tutorial
N. Hansen
74
1,374
0
04 Apr 2016
Weight Normalization: A Simple Reparameterization to Accelerate Training
  of Deep Neural Networks
Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks
Tim Salimans
Diederik P. Kingma
ODL
194
1,942
0
25 Feb 2016
Deep Exploration via Bootstrapped DQN
Deep Exploration via Bootstrapped DQN
Ian Osband
Charles Blundell
Alexander Pritzel
Benjamin Van Roy
121
1,309
0
15 Feb 2016
Continuous control with deep reinforcement learning
Continuous control with deep reinforcement learning
Timothy Lillicrap
Jonathan J. Hunt
Alexander Pritzel
N. Heess
Tom Erez
Yuval Tassa
David Silver
Daan Wierstra
320
13,248
0
09 Sep 2015
Trust Region Policy Optimization
Trust Region Policy Optimization
John Schulman
Sergey Levine
Philipp Moritz
Michael I. Jordan
Pieter Abbeel
277
6,776
0
19 Feb 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
1.8K
150,115
0
22 Dec 2014
Efficient Natural Evolution Strategies
Efficient Natural Evolution Strategies
Yi Sun
Daan Wierstra
Tom Schaul
Jürgen Schmidhuber
80
122
0
26 Sep 2012
Path Integral Policy Improvement with Covariance Matrix Adaptation
Path Integral Policy Improvement with Covariance Matrix Adaptation
F. Stulp
Olivier Sigaud
81
209
0
18 Jun 2012
1