ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.00656
  4. Cited By
Perfect Match: A Simple Method for Learning Representations For
  Counterfactual Inference With Neural Networks

Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks

1 October 2018
Patrick Schwab
Lorenz Linhardt
W. Karlen
    CML
    BDL
ArXivPDFHTML

Papers citing "Perfect Match: A Simple Method for Learning Representations For Counterfactual Inference With Neural Networks"

20 / 20 papers shown
Title
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
Lokesh Nagalapatti
Pranava Singhal
Avishek Ghosh
Sunita Sarawagi
CML
83
0
0
07 Feb 2025
Federated Learning for Estimating Heterogeneous Treatment Effects
Federated Learning for Estimating Heterogeneous Treatment Effects
Disha Makhija
Joydeep Ghosh
Yejin Kim
CML
FedML
43
2
0
27 Feb 2024
Bounds on Representation-Induced Confounding Bias for Treatment Effect
  Estimation
Bounds on Representation-Induced Confounding Bias for Treatment Effect Estimation
Valentyn Melnychuk
Dennis Frauen
Stefan Feuerriegel
CML
32
9
0
19 Nov 2023
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual
  Inference
VLUCI: Variational Learning of Unobserved Confounders for Counterfactual Inference
Yonghe Zhao
Q. Huang
Siwei Wu
Yun Peng
H. Sun
BDL
CML
21
0
0
02 Aug 2023
Continual Causal Inference with Incremental Observational Data
Continual Causal Inference with Incremental Observational Data
Zhixuan Chu
Ruopeng Li
S. Rathbun
Sheng Li
CML
43
15
0
03 Mar 2023
Data-Driven Estimation of Heterogeneous Treatment Effects
Data-Driven Estimation of Heterogeneous Treatment Effects
Christopher Tran
Keith Burghardt
Kristina Lerman
Elena Zheleva
CML
30
1
0
16 Jan 2023
Deep Causal Learning for Robotic Intelligence
Deep Causal Learning for Robotic Intelligence
Yong Li
CML
44
5
0
23 Dec 2022
Deep Causal Learning: Representation, Discovery and Inference
Deep Causal Learning: Representation, Discovery and Inference
Zizhen Deng
Xiaolong Zheng
Hu Tian
D. Zeng
CML
BDL
36
11
0
07 Nov 2022
Is More Data All You Need? A Causal Exploration
Is More Data All You Need? A Causal Exploration
Athanasios Vlontzos
Hadrien Reynaud
Bernhard Kainz
CML
29
2
0
06 Jun 2022
DÁRTAGNAN: Counterfactual Video Generation
DÁRTAGNAN: Counterfactual Video Generation
Hadrien Reynaud
Athanasios Vlontzos
Mischa Dombrowski
Ciarán M. Gilligan-Lee
A. Beqiri
Paul Leeson
Bernhard Kainz
VGen
CML
MedIm
30
19
0
03 Jun 2022
Multi-Task Adversarial Learning for Treatment Effect Estimation in
  Basket Trials
Multi-Task Adversarial Learning for Treatment Effect Estimation in Basket Trials
Zhixuan Chu
S. Rathbun
Sheng Li
CML
30
10
0
10 Mar 2022
Evaluation Methods and Measures for Causal Learning Algorithms
Evaluation Methods and Measures for Causal Learning Algorithms
Lu Cheng
Ruocheng Guo
Raha Moraffah
Paras Sheth
K. S. Candan
Huan Liu
CML
ELM
29
51
0
07 Feb 2022
Exploring Transformer Backbones for Heterogeneous Treatment Effect
  Estimation
Exploring Transformer Backbones for Heterogeneous Treatment Effect Estimation
Yi-Fan Zhang
Hanlin Zhang
Zachary Chase Lipton
Li Erran Li
Eric P. Xing
OODD
28
30
0
02 Feb 2022
Estimating Categorical Counterfactuals via Deep Twin Networks
Estimating Categorical Counterfactuals via Deep Twin Networks
Athanasios Vlontzos
Bernhard Kainz
Ciarán M. Gilligan-Lee
OOD
CML
BDL
26
16
0
04 Sep 2021
NCoRE: Neural Counterfactual Representation Learning for Combinations of
  Treatments
NCoRE: Neural Counterfactual Representation Learning for Combinations of Treatments
S. Parbhoo
Stefan Bauer
Patrick Schwab
CML
BDL
19
16
0
20 Mar 2021
GraphITE: Estimating Individual Effects of Graph-structured Treatments
GraphITE: Estimating Individual Effects of Graph-structured Treatments
Shonosuke Harada
H. Kashima
CML
27
21
0
29 Sep 2020
Counterfactual Evaluation of Treatment Assignment Functions with
  Networked Observational Data
Counterfactual Evaluation of Treatment Assignment Functions with Networked Observational Data
Ruocheng Guo
Jundong Li
Huan Liu
CML
OffRL
33
21
0
22 Dec 2019
Learning Counterfactual Representations for Estimating Individual
  Dose-Response Curves
Learning Counterfactual Representations for Estimating Individual Dose-Response Curves
Patrick Schwab
Lorenz Linhardt
Stefan Bauer
J. M. Buhmann
W. Karlen
CML
OOD
32
131
0
03 Feb 2019
Learning Representations for Counterfactual Inference
Learning Representations for Counterfactual Inference
Fredrik D. Johansson
Uri Shalit
David Sontag
CML
OOD
BDL
232
720
0
12 May 2016
Domain Adaptation: Learning Bounds and Algorithms
Domain Adaptation: Learning Bounds and Algorithms
Yishay Mansour
M. Mohri
Afshin Rostamizadeh
179
791
0
19 Feb 2009
1