ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.00555
  4. Cited By
Probabilistic Meta-Representations Of Neural Networks

Probabilistic Meta-Representations Of Neural Networks

1 October 2018
Theofanis Karaletsos
Peter Dayan
Zoubin Ghahramani
    BDL
ArXiv (abs)PDFHTML

Papers citing "Probabilistic Meta-Representations Of Neural Networks"

10 / 10 papers shown
Title
Tackling covariate shift with node-based Bayesian neural networks
Tackling covariate shift with node-based Bayesian neural networks
Trung Trinh
Markus Heinonen
Luigi Acerbi
Samuel Kaski
BDLUQCV
75
6
0
06 Jun 2022
TyXe: Pyro-based Bayesian neural nets for Pytorch
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OODMUBDL
136
6
0
01 Oct 2021
Compact and Optimal Deep Learning with Recurrent Parameter Generators
Compact and Optimal Deep Learning with Recurrent Parameter Generators
Jiayun Wang
Yubei Chen
Stella X. Yu
Brian Cheung
Yann LeCun
BDL
89
4
0
15 Jul 2021
Priors in Bayesian Deep Learning: A Review
Priors in Bayesian Deep Learning: A Review
Vincent Fortuin
UQCVBDL
141
134
0
14 May 2021
Posterior Meta-Replay for Continual Learning
Posterior Meta-Replay for Continual Learning
Christian Henning
Maria R. Cervera
Francesco DÁngelo
J. Oswald
Regina Traber
Benjamin Ehret
Seijin Kobayashi
Benjamin Grewe
João Sacramento
CLLBDL
117
60
0
01 Mar 2021
Encoding the latent posterior of Bayesian Neural Networks for
  uncertainty quantification
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantification
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDLUQCV
94
27
0
04 Dec 2020
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Hierarchical Gaussian Process Priors for Bayesian Neural Network Weights
Theofanis Karaletsos
T. Bui
BDL
107
24
0
10 Feb 2020
The k-tied Normal Distribution: A Compact Parameterization of Gaussian
  Mean Field Posteriors in Bayesian Neural Networks
The k-tied Normal Distribution: A Compact Parameterization of Gaussian Mean Field Posteriors in Bayesian Neural Networks
J. Swiatkowski
Kevin Roth
Bastiaan S. Veeling
Linh-Tam Tran
Joshua V. Dillon
Jasper Snoek
Stephan Mandt
Tim Salimans
Rodolphe Jenatton
Sebastian Nowozin
BDL
89
47
0
07 Feb 2020
Subspace Inference for Bayesian Deep Learning
Subspace Inference for Bayesian Deep Learning
Pavel Izmailov
Wesley J. Maddox
Polina Kirichenko
T. Garipov
Dmitry Vetrov
A. Wilson
UQCVBDL
105
144
0
17 Jul 2019
The Deep Weight Prior
The Deep Weight Prior
Andrei Atanov
Arsenii Ashukha
Kirill Struminsky
Dmitry Vetrov
Max Welling
BDL
125
37
0
16 Oct 2018
1