ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1810.00123
  4. Cited By
Generalization and Regularization in DQN

Generalization and Regularization in DQN

29 September 2018
Jesse Farebrother
Marlos C. Machado
Michael Bowling
ArXivPDFHTML

Papers citing "Generalization and Regularization in DQN"

9 / 59 papers shown
Title
F2A2: Flexible Fully-decentralized Approximate Actor-critic for
  Cooperative Multi-agent Reinforcement Learning
F2A2: Flexible Fully-decentralized Approximate Actor-critic for Cooperative Multi-agent Reinforcement Learning
Wenhao Li
Bo Jin
Xiangfeng Wang
Junchi Yan
H. Zha
25
21
0
17 Apr 2020
Leveraging Procedural Generation to Benchmark Reinforcement Learning
Leveraging Procedural Generation to Benchmark Reinforcement Learning
K. Cobbe
Christopher Hesse
Jacob Hilton
John Schulman
45
541
0
03 Dec 2019
Robust Visual Domain Randomization for Reinforcement Learning
Robust Visual Domain Randomization for Reinforcement Learning
Reda Bahi Slaoui
W. Clements
Jakob N. Foerster
Sébastien Toth
OOD
21
12
0
23 Oct 2019
Reasoning and Generalization in RL: A Tool Use Perspective
Reasoning and Generalization in RL: A Tool Use Perspective
Sam Wenke
D. Saunders
Mike Qiu
J. Fleming
OffRL
LRM
18
5
0
03 Jul 2019
Generalizing from a few environments in safety-critical reinforcement
  learning
Generalizing from a few environments in safety-critical reinforcement learning
Zachary Kenton
Angelos Filos
Owain Evans
Y. Gal
15
16
0
02 Jul 2019
In Hindsight: A Smooth Reward for Steady Exploration
In Hindsight: A Smooth Reward for Steady Exploration
H. Jomaa
Josif Grabocka
Lars Schmidt-Thieme
11
0
0
24 Jun 2019
Active Domain Randomization
Active Domain Randomization
Bhairav Mehta
Manfred Diaz
Florian Golemo
C. Pal
Liam Paull
30
257
0
09 Apr 2019
Quantifying Generalization in Reinforcement Learning
Quantifying Generalization in Reinforcement Learning
K. Cobbe
Oleg Klimov
Christopher Hesse
Taehoon Kim
John Schulman
OffRL
54
661
0
06 Dec 2018
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks
Chelsea Finn
Pieter Abbeel
Sergey Levine
OOD
496
11,727
0
09 Mar 2017
Previous
12