ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.10877
  4. Cited By
Learning for Single-Shot Confidence Calibration in Deep Neural Networks
  through Stochastic Inferences

Learning for Single-Shot Confidence Calibration in Deep Neural Networks through Stochastic Inferences

28 September 2018
Seonguk Seo
Paul Hongsuck Seo
Bohyung Han
    FedML
    UQCV
    BDL
ArXivPDFHTML

Papers citing "Learning for Single-Shot Confidence Calibration in Deep Neural Networks through Stochastic Inferences"

21 / 21 papers shown
Title
MBCT: Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration
MBCT: Tree-Based Feature-Aware Binning for Individual Uncertainty Calibration
Siguang Huang
Yunli Wang
Lili Mou
Huayue Zhang
Ziru Xu
Chuan Yu
Bo Zheng
73
15
0
13 Mar 2025
Towards Calibrated Deep Clustering Network
Towards Calibrated Deep Clustering Network
Yuheng Jia
Jianhong Cheng
Hui Liu
Junhui Hou
UQCV
58
1
0
04 Mar 2024
Rethinking Soft Label in Label Distribution Learning Perspective
Rethinking Soft Label in Label Distribution Learning Perspective
Seungbum Hong
Jihun Yoon
Bogyu Park
Min-Kook Choi
36
0
0
31 Jan 2023
Propagating Variational Model Uncertainty for Bioacoustic Call Label
  Smoothing
Propagating Variational Model Uncertainty for Bioacoustic Call Label Smoothing
Georgios Rizos
J. Lawson
Simon Mitchell
Pranay Shah
Xin Wen
Cristina Banks‐Leite
R. Ewers
Bjoern W. Schuller
UQCV
18
2
0
19 Oct 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
35
4
0
28 Jun 2022
Self-Distribution Distillation: Efficient Uncertainty Estimation
Self-Distribution Distillation: Efficient Uncertainty Estimation
Yassir Fathullah
Mark Gales
UQCV
22
11
0
15 Mar 2022
Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
Bayesian Confidence Calibration for Epistemic Uncertainty Modelling
Fabian Küppers
Jan Kronenberger
Jonas Schneider
Anselm Haselhoff
UQCV
BDL
19
8
0
21 Sep 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDL
UQCV
OOD
66
1,112
0
07 Jul 2021
No Cost Likelihood Manipulation at Test Time for Making Better Mistakes
  in Deep Networks
No Cost Likelihood Manipulation at Test Time for Making Better Mistakes in Deep Networks
Shyamgopal Karthik
Ameya Prabhu
P. Dokania
Vineet Gandhi
14
22
0
01 Apr 2021
Loss Estimators Improve Model Generalization
Loss Estimators Improve Model Generalization
V. Narayanaswamy
Jayaraman J. Thiagarajan
Deepta Rajan
A. Spanias
OOD
UQCV
29
0
0
05 Mar 2021
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
Aleksandr Podkopaev
Aaditya Ramdas
UQCV
33
79
0
18 Jun 2020
Efficient Ensemble Model Generation for Uncertainty Estimation with
  Bayesian Approximation in Segmentation
Efficient Ensemble Model Generation for Uncertainty Estimation with Bayesian Approximation in Segmentation
Hong Joo Lee
S. T. Kim
Hakmin Lee
Nassir Navab
Yong Man Ro
UQCV
16
7
0
21 May 2020
Designing Accurate Emulators for Scientific Processes using
  Calibration-Driven Deep Models
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
P. Bremer
J. Gaffney
G. Anderson
B. Spears
18
21
0
05 May 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
30
219
0
16 Mar 2020
Intra Order-preserving Functions for Calibration of Multi-Class Neural
  Networks
Intra Order-preserving Functions for Calibration of Multi-Class Neural Networks
Amir M. Rahimi
Amirreza Shaban
Ching-An Cheng
Richard I. Hartley
Byron Boots
UQCV
16
68
0
15 Mar 2020
Confidence Calibration and Predictive Uncertainty Estimation for Deep
  Medical Image Segmentation
Confidence Calibration and Predictive Uncertainty Estimation for Deep Medical Image Segmentation
Alireza Mehrtash
W. Wells
C. Tempany
Purang Abolmaesumi
Tina Kapur
OOD
FedML
UQCV
24
265
0
29 Nov 2019
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary
  Interval Predictors
Building Calibrated Deep Models via Uncertainty Matching with Auxiliary Interval Predictors
Jayaraman J. Thiagarajan
Bindya Venkatesh
P. Sattigeri
P. Bremer
UQCV
25
31
0
09 Sep 2019
Bin-wise Temperature Scaling (BTS): Improvement in Confidence
  Calibration Performance through Simple Scaling Techniques
Bin-wise Temperature Scaling (BTS): Improvement in Confidence Calibration Performance through Simple Scaling Techniques
Byeongmoon Ji
Hyemin Jung
Jihyeun Yoon
Kyungyul Kim
Younghak Shin
UQCV
27
24
0
30 Aug 2019
Measuring Calibration in Deep Learning
Measuring Calibration in Deep Learning
Jeremy Nixon
Michael W. Dusenberry
Ghassen Jerfel
Timothy Nguyen
Jeremiah Zhe Liu
Linchuan Zhang
Dustin Tran
UQCV
15
479
0
02 Apr 2019
Simple and Scalable Predictive Uncertainty Estimation using Deep
  Ensembles
Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles
Balaji Lakshminarayanan
Alexander Pritzel
Charles Blundell
UQCV
BDL
276
5,695
0
05 Dec 2016
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
287
9,167
0
06 Jun 2015
1