ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.10200
  4. Cited By
Compressing the Input for CNNs with the First-Order Scattering Transform

Compressing the Input for CNNs with the First-Order Scattering Transform

27 September 2018
Edouard Oyallon
Eugene Belilovsky
Sergey Zagoruyko
Michal Valko
ArXivPDFHTML

Papers citing "Compressing the Input for CNNs with the First-Order Scattering Transform"

6 / 6 papers shown
Title
ScatterFormer: Locally-Invariant Scattering Transformer for
  Patient-Independent Multispectral Detection of Epileptiform Discharges
ScatterFormer: Locally-Invariant Scattering Transformer for Patient-Independent Multispectral Detection of Epileptiform Discharges
Rui-Hua Zheng
Jun Yu Li
Yi Wang
Tian Luo
Yuguo Yu
MedIm
53
4
0
26 Apr 2023
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
On the Shift Invariance of Max Pooling Feature Maps in Convolutional Neural Networks
Hubert Leterme
K. Polisano
V. Perrier
Alahari Karteek
FAtt
58
2
0
19 Sep 2022
Efficient Hybrid Network: Inducting Scattering Features
Efficient Hybrid Network: Inducting Scattering Features
D. Minskiy
M. Bober
25
3
0
29 Mar 2022
Harmonic Convolutional Networks based on Discrete Cosine Transform
Harmonic Convolutional Networks based on Discrete Cosine Transform
Matej Ulicny
V. Krylov
Rozenn Dahyot
27
34
0
18 Jan 2020
Decoupled Greedy Learning of CNNs
Decoupled Greedy Learning of CNNs
Eugene Belilovsky
Michael Eickenberg
Edouard Oyallon
25
115
0
23 Jan 2019
Harmonic Networks: Integrating Spectral Information into CNNs
Harmonic Networks: Integrating Spectral Information into CNNs
Matej Ulicny
V. Krylov
Rozenn Dahyot
23
7
0
07 Dec 2018
1