Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.09573
Cited By
Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview
25 September 2018
Yuejie Chi
Yue M. Lu
Yuxin Chen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nonconvex Optimization Meets Low-Rank Matrix Factorization: An Overview"
25 / 75 papers shown
Title
HePPCAT: Probabilistic PCA for Data with Heteroscedastic Noise
David Hong
Kyle Gilman
Laura Balzano
Jeffrey A. Fessler
40
19
0
10 Jan 2021
The Nonconvex Geometry of Linear Inverse Problems
Armin Eftekhari
Peyman Mohajerin Esfahani
20
1
0
07 Jan 2021
Spectral Methods for Data Science: A Statistical Perspective
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
40
165
0
15 Dec 2020
Recursive Importance Sketching for Rank Constrained Least Squares: Algorithms and High-order Convergence
Yuetian Luo
Wen Huang
Xudong Li
Anru R. Zhang
23
15
0
17 Nov 2020
Low-Rank Matrix Recovery with Scaled Subgradient Methods: Fast and Robust Convergence Without the Condition Number
Tian Tong
Cong Ma
Yuejie Chi
16
55
0
26 Oct 2020
Escaping Saddle Points in Ill-Conditioned Matrix Completion with a Scalable Second Order Method
C. Kümmerle
C. M. Verdun
19
6
0
07 Sep 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
29
93
0
15 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
35
50
0
14 Jun 2020
Adversarial Classification via Distributional Robustness with Wasserstein Ambiguity
Nam Ho-Nguyen
Stephen J. Wright
OOD
45
16
0
28 May 2020
Accelerating Ill-Conditioned Low-Rank Matrix Estimation via Scaled Gradient Descent
Tian Tong
Cong Ma
Yuejie Chi
27
113
0
18 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
24
155
0
13 May 2020
An Optimal Statistical and Computational Framework for Generalized Tensor Estimation
Rungang Han
Rebecca Willett
Anru R. Zhang
27
65
0
26 Feb 2020
Depth Descent Synchronization in
S
O
(
D
)
\mathrm{SO}(D)
SO
(
D
)
Tyler Maunu
Gilad Lerman
MDE
34
2
0
13 Feb 2020
Rank
2
r
2r
2
r
iterative least squares: efficient recovery of ill-conditioned low rank matrices from few entries
Jonathan Bauch
B. Nadler
Pini Zilber
37
14
0
05 Feb 2020
Optimization for deep learning: theory and algorithms
Ruoyu Sun
ODL
19
168
0
19 Dec 2019
Manifold Gradient Descent Solves Multi-Channel Sparse Blind Deconvolution Provably and Efficiently
Laixi Shi
Yuejie Chi
30
26
0
25 Nov 2019
High-dimensional principal component analysis with heterogeneous missingness
Ziwei Zhu
Tengyao Wang
R. Samworth
39
47
0
28 Jun 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
29
491
0
31 May 2019
Noisy Matrix Completion: Understanding Statistical Guarantees for Convex Relaxation via Nonconvex Optimization
Yuxin Chen
Yuejie Chi
Jianqing Fan
Cong Ma
Yuling Yan
17
128
0
20 Feb 2019
Subgradient Descent Learns Orthogonal Dictionaries
Yu Bai
Qijia Jiang
Ju Sun
17
51
0
25 Oct 2018
A Survey on Nonconvex Regularization Based Sparse and Low-Rank Recovery in Signal Processing, Statistics, and Machine Learning
Fei Wen
L. Chu
Peilin Liu
Robert C. Qiu
23
153
0
16 Aug 2018
Robust high dimensional factor models with applications to statistical machine learning
Jianqing Fan
Kaizheng Wang
Yiqiao Zhong
Ziwei Zhu
32
53
0
12 Aug 2018
A modern maximum-likelihood theory for high-dimensional logistic regression
Pragya Sur
Emmanuel J. Candes
23
285
0
19 Mar 2018
Learning Latent Features with Pairwise Penalties in Low-Rank Matrix Completion
Kaiyi Ji
Jian Tan
Jinfeng Xu
Yuejie Chi
25
3
0
16 Feb 2018
The Projected Power Method: An Efficient Algorithm for Joint Alignment from Pairwise Differences
Yuxin Chen
Emmanuel Candes
37
92
0
19 Sep 2016
Previous
1
2