Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.09446
Cited By
Nested cross-validation when selecting classifiers is overzealous for most practical applications
25 September 2018
Jacques Wainer
G. Cawley
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Nested cross-validation when selecting classifiers is overzealous for most practical applications"
7 / 7 papers shown
Title
Unveiling Processing--Property Relationships in Laser Powder Bed Fusion: The Synergy of Machine Learning and High-throughput Experiments
Mahsa Amiri
Zahra Zanjani Foumani
Penghui Cao
Lorenzo Valdevit
Ramin Bostanabad
AI4CE
24
1
0
30 Aug 2024
Predicting Parkinson's disease trajectory using clinical and functional MRI features: a reproduction and replication study
Elodie Germani
Nikhil Baghwat
Mathieu Dugré
Rémi Gau
A. Montillo
Kevin Nguyen
Andrzej Sokolowski
Madeleine Sharp
J B Poline
Tristan Glatard
26
0
0
20 Feb 2024
Video-based Automatic Lameness Detection of Dairy Cows using Pose Estimation and Multiple Locomotion Traits
H. Russello
R. V. D. Tol
M. Holzhauer
Eldert J. van Henten
Gert Kootstra
15
13
0
10 Jan 2024
A Bayesian Bradley-Terry model to compare multiple ML algorithms on multiple data sets
Jacques Wainer
13
10
0
09 Aug 2022
Extract Dynamic Information To Improve Time Series Modeling: a Case Study with Scientific Workflow
Jeeyung Kim
Mengtian Jin
Youkow Homma
A. Sim
W. Kroeger
K. Wu
AI4TS
16
0
0
19 May 2022
Utilizing stability criteria in choosing feature selection methods yields reproducible results in microbiome data
Lingjing Jiang
N. Haiminen
A. Carrieri
Shi Huang
Yoshiki Vazquez-Baeza
L. Parida
Ho-Cheol Kim
Austin D. Swafford
R. Knight
L. Natarajan
20
7
0
30 Nov 2020
Automating biomedical data science through tree-based pipeline optimization
Randal S. Olson
Ryan J. Urbanowicz
Peter C. Andrews
Nicole A. Lavender
L. C. Kidd
J. Moore
AI4CE
33
311
0
28 Jan 2016
1