ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.07099
  4. Cited By
Dual Reconstruction Nets for Image Super-Resolution with Gradient
  Sensitive Loss

Dual Reconstruction Nets for Image Super-Resolution with Gradient Sensitive Loss

19 September 2018
Yong Guo
Qi Chen
Jian Chen
Junzhou Huang
Yanwu Xu
Jingyun Liang
P. Zhao
Mingkui Tan
    SupR
ArXivPDFHTML

Papers citing "Dual Reconstruction Nets for Image Super-Resolution with Gradient Sensitive Loss"

4 / 4 papers shown
Title
Closed-loop Matters: Dual Regression Networks for Single Image
  Super-Resolution
Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution
Yong Guo
Jian Chen
Jingdong Wang
Qi Chen
Jingyun Liang
Zeshuai Deng
Yanwu Xu
Mingkui Tan
SupR
23
281
0
16 Mar 2020
Discrimination-aware Network Pruning for Deep Model Compression
Discrimination-aware Network Pruning for Deep Model Compression
Jing Liu
Bohan Zhuang
Zhuangwei Zhuang
Yong Guo
Junzhou Huang
Jin-Hui Zhu
Mingkui Tan
CVBM
19
119
0
04 Jan 2020
Deep Learning for Image Super-resolution: A Survey
Deep Learning for Image Super-resolution: A Survey
Zhihao Wang
Jian Chen
Guosheng Lin
SupR
24
1,419
0
16 Feb 2019
Real-Time Single Image and Video Super-Resolution Using an Efficient
  Sub-Pixel Convolutional Neural Network
Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network
Wenzhe Shi
Jose Caballero
Ferenc Huszár
J. Totz
Andrew P. Aitken
Rob Bishop
Daniel Rueckert
Zehan Wang
SupR
234
5,181
0
16 Sep 2016
1