ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06674
  4. Cited By
Benchmarking five global optimization approaches for nano-optical shape
  optimization and parameter reconstruction

Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction

18 September 2018
Philipp‐Immanuel Schneider
Xavier Garcia Santiago
V. Soltwisch
M. Hammerschmidt
Sven Burger
C. Rockstuhl
ArXivPDFHTML

Papers citing "Benchmarking five global optimization approaches for nano-optical shape optimization and parameter reconstruction"

10 / 10 papers shown
Title
Impact Study of Numerical Discretization Accuracy on Parameter
  Reconstructions and Model Parameter Distributions
Impact Study of Numerical Discretization Accuracy on Parameter Reconstructions and Model Parameter Distributions
Matthias Plock
M. Hammerschmidt
Sven Burger
Philipp‐Immanuel Schneider
Christof Schütte
16
0
0
04 May 2023
A neural operator-based surrogate solver for free-form electromagnetic
  inverse design
A neural operator-based surrogate solver for free-form electromagnetic inverse design
Yannick Augenstein
T. Repän
C. Rockstuhl
AI4CE
24
28
0
04 Feb 2023
Bayesian Target-Vector Optimization for Efficient Parameter
  Reconstruction
Bayesian Target-Vector Optimization for Efficient Parameter Reconstruction
Matthias Plock
Kas Andrle
Sven Burger
Philipp‐Immanuel Schneider
14
5
0
23 Feb 2022
Recent advances in Bayesian optimization with applications to parameter
  reconstruction in optical nano-metrology
Recent advances in Bayesian optimization with applications to parameter reconstruction in optical nano-metrology
Matthias Plock
Sven Burger
Philipp‐Immanuel Schneider
13
4
0
12 Jul 2021
A Framework for Discovering Optimal Solutions in Photonic Inverse Design
A Framework for Discovering Optimal Solutions in Photonic Inverse Design
Jagrit Digani
Phillip Hon
Artur R. Davoyan
12
0
0
03 Jun 2021
Bayesian optimization with improved scalability and derivative
  information for efficient design of nanophotonic structures
Bayesian optimization with improved scalability and derivative information for efficient design of nanophotonic structures
Xavier Garcia Santiago
Sven Burger
C. Rockstuhl
Philipp‐Immanuel Schneider
15
12
0
08 Jan 2021
Deep neural networks for the evaluation and design of photonic devices
Deep neural networks for the evaluation and design of photonic devices
Jiaqi Jiang
Ming-Keh Chen
Jonathan A. Fan
21
393
0
30 Jun 2020
Using Gaussian process regression for efficient parameter reconstruction
Using Gaussian process regression for efficient parameter reconstruction
Philipp‐Immanuel Schneider
M. Hammerschmidt
L. Zschiedrich
Sven Burger
6
14
0
28 Mar 2019
Adaptive and Safe Bayesian Optimization in High Dimensions via
  One-Dimensional Subspaces
Adaptive and Safe Bayesian Optimization in High Dimensions via One-Dimensional Subspaces
Johannes Kirschner
Mojmír Mutný
N. Hiller
R. Ischebeck
Andreas Krause
18
147
0
08 Feb 2019
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
89
271
0
24 Feb 2014
1