ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1809.06514
  4. Cited By
Actionable Recourse in Linear Classification

Actionable Recourse in Linear Classification

18 September 2018
Berk Ustun
Alexander Spangher
Yang Liu
    FaML
ArXivPDFHTML

Papers citing "Actionable Recourse in Linear Classification"

15 / 115 papers shown
Title
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Getting a CLUE: A Method for Explaining Uncertainty Estimates
Javier Antorán
Umang Bhatt
T. Adel
Adrian Weller
José Miguel Hernández-Lobato
UQCV
BDL
40
111
0
11 Jun 2020
Algorithmic recourse under imperfect causal knowledge: a probabilistic
  approach
Algorithmic recourse under imperfect causal knowledge: a probabilistic approach
Amir-Hossein Karimi
Julius von Kügelgen
Bernhard Schölkopf
Isabel Valera
CML
28
178
0
11 Jun 2020
Explaining Deep Neural Networks and Beyond: A Review of Methods and
  Applications
Explaining Deep Neural Networks and Beyond: A Review of Methods and Applications
Wojciech Samek
G. Montavon
Sebastian Lapuschkin
Christopher J. Anders
K. Müller
XAI
44
82
0
17 Mar 2020
ViCE: Visual Counterfactual Explanations for Machine Learning Models
ViCE: Visual Counterfactual Explanations for Machine Learning Models
Oscar Gomez
Steffen Holter
Jun Yuan
E. Bertini
AAML
57
93
0
05 Mar 2020
The Problem with Metrics is a Fundamental Problem for AI
The Problem with Metrics is a Fundamental Problem for AI
Rachel L. Thomas
D. Uminsky
11
66
0
20 Feb 2020
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Algorithmic Recourse: from Counterfactual Explanations to Interventions
Amir-Hossein Karimi
Bernhard Schölkopf
Isabel Valera
CML
21
337
0
14 Feb 2020
Decisions, Counterfactual Explanations and Strategic Behavior
Decisions, Counterfactual Explanations and Strategic Behavior
Stratis Tsirtsis
Manuel Gomez Rodriguez
13
58
0
11 Feb 2020
Preserving Causal Constraints in Counterfactual Explanations for Machine
  Learning Classifiers
Preserving Causal Constraints in Counterfactual Explanations for Machine Learning Classifiers
Divyat Mahajan
Chenhao Tan
Amit Sharma
OOD
CML
19
205
0
06 Dec 2019
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Learning Model-Agnostic Counterfactual Explanations for Tabular Data
Martin Pawelczyk
Johannes Haug
Klaus Broelemann
Gjergji Kasneci
OOD
CML
27
199
0
21 Oct 2019
Evaluating Explanation Without Ground Truth in Interpretable Machine
  Learning
Evaluating Explanation Without Ground Truth in Interpretable Machine Learning
Fan Yang
Mengnan Du
Xia Hu
XAI
ELM
27
66
0
16 Jul 2019
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Model-Agnostic Counterfactual Explanations for Consequential Decisions
Amir-Hossein Karimi
Gilles Barthe
Borja Balle
Isabel Valera
33
317
0
27 May 2019
Optimal Decision Making Under Strategic Behavior
Optimal Decision Making Under Strategic Behavior
Stratis Tsirtsis
Behzad Tabibian
M. Khajehnejad
Adish Singla
Bernhard Schölkopf
Manuel Gomez Rodriguez
18
31
0
22 May 2019
Interpreting Neural Networks Using Flip Points
Interpreting Neural Networks Using Flip Points
Roozbeh Yousefzadeh
D. O’Leary
AAML
FAtt
19
17
0
21 Mar 2019
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and
  Mitigating Unwanted Algorithmic Bias
AI Fairness 360: An Extensible Toolkit for Detecting, Understanding, and Mitigating Unwanted Algorithmic Bias
Rachel K. E. Bellamy
Kuntal Dey
Michael Hind
Samuel C. Hoffman
Stephanie Houde
...
Diptikalyan Saha
P. Sattigeri
Moninder Singh
Kush R. Varshney
Yunfeng Zhang
FaML
SyDa
16
793
0
03 Oct 2018
Learning Certifiably Optimal Rule Lists for Categorical Data
Learning Certifiably Optimal Rule Lists for Categorical Data
E. Angelino
Nicholas Larus-Stone
Daniel Alabi
Margo Seltzer
Cynthia Rudin
48
195
0
06 Apr 2017
Previous
123