Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1809.05630
Cited By
Towards Better Interpretability in Deep Q-Networks
15 September 2018
Raghuram Mandyam Annasamy
Katia Sycara
FAtt
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Towards Better Interpretability in Deep Q-Networks"
15 / 15 papers shown
Title
Leveraging Reward Consistency for Interpretable Feature Discovery in Reinforcement Learning
Qisen Yang
Huanqian Wang
Mukun Tong
Wenjie Shi
Gao Huang
Shiji Song
40
5
0
04 Sep 2023
A Closer Look at Reward Decomposition for High-Level Robotic Explanations
Wenhao Lu
Xufeng Zhao
S. Magg
M. Gromniak
Mengdi Li
S. Wermter
42
7
0
25 Apr 2023
Explainable Deep Reinforcement Learning: State of the Art and Challenges
G. Vouros
XAI
57
77
0
24 Jan 2023
Time-Efficient Reward Learning via Visually Assisted Cluster Ranking
David Zhang
Micah Carroll
Andreea Bobu
Anca Dragan
32
4
0
30 Nov 2022
ProtoX: Explaining a Reinforcement Learning Agent via Prototyping
Ronilo Ragodos
Tong Wang
Qihang Lin
Xun Zhou
24
7
0
06 Nov 2022
Interpretable Option Discovery using Deep Q-Learning and Variational Autoencoders
Per-Arne Andersen
Ole-Christoffer Granmo
Morten Goodwin
OOD
36
0
0
03 Oct 2022
Contrastive Learning as Goal-Conditioned Reinforcement Learning
Benjamin Eysenbach
Tianjun Zhang
Ruslan Salakhutdinov
Sergey Levine
SSL
OffRL
42
141
0
15 Jun 2022
A Survey of Explainable Reinforcement Learning
Stephanie Milani
Nicholay Topin
Manuela Veloso
Fei Fang
XAI
LRM
35
53
0
17 Feb 2022
Temporal-Spatial Causal Interpretations for Vision-Based Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Cheng Wu
36
9
0
06 Dec 2021
Deep Interpretable Models of Theory of Mind
Ini Oguntola
Dana Hughes
Katia Sycara
HAI
33
26
0
07 Apr 2021
Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods
Nicholay Topin
Stephanie Milani
Fei Fang
Manuela Veloso
OffRL
29
33
0
25 Feb 2021
What Did You Think Would Happen? Explaining Agent Behaviour Through Intended Outcomes
Herman Yau
Chris Russell
Simon Hadfield
FAtt
LRM
28
36
0
10 Nov 2020
Automatic Discovery of Interpretable Planning Strategies
Julian Skirzyñski
Frederic Becker
Falk Lieder
21
15
0
24 May 2020
Self-Supervised Discovering of Interpretable Features for Reinforcement Learning
Wenjie Shi
Gao Huang
Shiji Song
Zhuoyuan Wang
Tingyu Lin
Cheng Wu
SSL
28
18
0
16 Mar 2020
Exploratory Not Explanatory: Counterfactual Analysis of Saliency Maps for Deep Reinforcement Learning
Akanksha Atrey
Kaleigh Clary
David D. Jensen
FAtt
LRM
30
90
0
09 Dec 2019
1